
ar
X

iv
:1

00
7.

02
35

v1
  [

m
at

h.
O

C
] 

 1
 J

ul
 2

01
0

ON POLYNOMIAL SOLVABILITY OF THE HAMILTONIAN CYCLE PROBLEM FOR

GRAPHS OF DEGREE LESS THAN OR EQUAL TO 3

IVAN I. GORAY∗

Abstract. Any graph can be represented pictorially as a figure. Moreover, it can be represented as two or more figures
that can be have different properties to each other. For the purpose of HCP, we represent a graph by two such figures. In
each of them, there is an exterior part called the contour, and an interior part. These two figures differ from each other by
the constitution of the edges in the interior part. That is, any edges in the interior part for one figure are not in the interior
for the other figure. We call these two figures basic objects.

We develop rules and algorithms that allow us to represent any graph of degree d ≤ 3 by two basic objects. Individually,
neither of these representations possess the features to easily determine the Hamiltonicity of the graph. However, the
combination of these two figures, once certain weights are assigned to their edges, allows us to determine the Hamiltonicity
with a polynomial-time check.

The rules for the assignment of weights are:
1. The weight of any edge of the interior part is 0, for both objects.
2. In both figures any common edge of the contour has the same weight.

The weights of the edges allow us to extend the number of parameters of the objects, that is sufficient to determine
the Hamiltonicity of the graph. Then, if the graph is Hamiltonian, then both figures possess the same set of parameters.
If the sets of parameters for two figures are different, then the graph is not Hamiltonian. The parameters that determine
the Hamiltonicity of the graph are the sums of weights of edges and windows of contours in the figure. The algorithms of
their construction do not contain a combinatorial number of elements and have polynomial complexity. We also supply an
estimate of the complexity of each algorithm.

Key words. P vs NP, HCP, Hamiltonicity of graphs, graphs of degree less than or equal to 3, equivalent graphs, graph
representation by basic objects, contour and interior parts of graphs, assignment weights to edges and nodes, Hamiltonian
cycle length

AMS subject classifications. 68Q25, 68R10, 03D15

1. Introduction. To date, a solution of the general problem P 6= NP has not be found. If this
problem can be solved then it will be most likely on the basis of some common features of the classes P
and NP. Looking for a solution of any particular P vs NP problem seems to lack perspective. If it were
possible to obtain, for a particular NP problem, that we cannot solve it in polynomial time, it would be
necessary to supply the complete set of algorithms used in the solution of this problem, which is most
likely impossible. Thinking deeper about the NP phenomenon and about the possibility of solving such
problems leads to some questions: Which algorithms, in principle, could be constructed to solve particular
NP problems ? Can we avoid combinatorial enumeration in such algorithms ? Can we overcome NP-
completeness with the help of such algorithms ? Garey and Johnson [1] say that polynomial algorithms
can be constructed only when it is possible to penetrate deep into the essence of the problem in question.
The success in solving particular NP problems using optimization methods is very high (e.g. [2, 3, 4, 5]).
Most likely, here is the key of the difficulty of finding the precise solution, because one can not substitute
the essence of the problem by advances in modern optimization technologies. It is commonly accepted
[6, 7, 8] that the branch and bound method in all NP problems is the most universal and effective. It is
possible that branch and bound methods mostly captures the difficulty of the problem as it is based in
investigation and transformation of the network.
The solution of the HCP that we offer here is not based on optimization. It does not contain a progression
to a better solution. This solution is based on the analysis of structural differences between two objects
constructed on the basis of the same non-oriented graph with degree less than equal to 3.

2. Objects.

2.1. Basic object.

2.1.1. Properties of basic object. Given a graph Γ of size N , we define object GN as a figure
representing Γ that, by some property or properties, differs from other figures representing the same
graph Γ. We can solve the HCP on a set of objects, and construct a parameter for each object such that
the parameters should not coincide unless the graph is Hamiltonian. While, individually, these objects
do not solve HCP, the solution of the problem is obtained on a finite set of the objects, by considering

∗I.I.G., Inc., Discrete Mathematics Division, 8 Obruchevyh str. Ap. 190, Saint Petersburg, 194064, Russian Federation
(lig@pcgrate.com).

1

http://arxiv.org/abs/1007.0235v1


2 I. GORAY

 

 

11 

5 

24 
25 

14 

15 

16 

17 

18 

10 

9 

22 

4 

3 

8 

1 2 

7 

6 

21 

20 

19 

13 

12 

 

 

 

23 

Fig. 2.1. An example of a first basic object and its properties. Nodes forming windows are 2, 6, 10, 18, 14, 25.
Windows are w(2− 6), w(10− 18), w(14− 25). Free edges are e(22 − 24), e(9− 12), e(8 − 15), e(17 − 23). Segments are
S2,25, S14,18, S6,10.

their special properties. In fact, for any two such figures, we will find a parameter that will distinguish
between them.

For certain special cases, it is only possible to construct a single, unique figure. In this case, the solution
of the HCP is given trivially by construction of this figure. However, in general, for the solution of HCP,
one has to construct two objects that differ in the constitution of edges in different parts of the objects,
and in the method of construction of those parts. As an example, in Figure 2.1, we display the first
(basic) object constructed from a 25-node graph.

Example 1. For convenience, we will distinguish between the exterior part of the figure, that we call
the contour, and the interior part. The contour contains the edges of the graph and so-called windows.
A window is an edge that does not belong to the graph. In the example in Figure 2.1, there are three
windows: w(2 − 6), w(10 − 18), and w(14 − 25), that are formed by the nodes 2 and 6, 10 and 15, and
14 and 25 of the graph Γ.

The edges of the interior part of the object, that are not connected at either end to the nodes that form
the windows (for convenience, we refer to these nodes as window nodes), are called free edges. In the
example given in Figure 2.1, the free edges are e(22− 24), e(17− 23), e(8− 15), e(9− 12).

As follows from the example, the basic object has the following properties.

1. Window nodes are not directly connected by the edges of the interior part. We refer to such edges
as links.

2. The basic object contains a maximal number of windows (three in this example). That is, no
further windows can be inserted without violating the previous property.

The contour is partitioned by windows into several parts, and can be determined and enumerated. The
parts of the object separated by windows will be called segments. In the example in Figure 2.1, there are
three segments, between nodes 2 and 25, 14 and 18, and 6 and 10, which we denote by (S2,25, S14,18,
S6,10). A segment is called degenerate if it consists of a single node such that has a window on both sides
in the contour.

The basic objects that are constructed for the HCP should satisfy the following properties.

(1) The number of windows in the object should be maximal. As we show later, we will use a simple
algorithm to increase the number of windows, and we will determine the criterion that signals
the end of the algorithm.

(2) Window nodes should not be connected to other window nodes by the edges of the interior part.
(3) The object should not contain degenerate segments if the degree of the graph is d = 3. Degenerate

segments can only exist for nodes of degree d = 2.
(4) For a given graph, the set of edges in the interior part should be different for any pair of basic

objects.

Lemma 1. For a degenerate segment-free graph Γ of size N , and degree d ≤ 3, the number of segments
in all basic objects is less than or equal to ν = [N/6].

Proof. First, we observe that, by property 1, the nodes that form the windows are not interconnected.
Therefore, every node that forms a window is connected by the edges of the interior part with another
two nodes that do not form windows. From the fragment of the graph shown in Figure 2.2, we see that



ON POLYNOMIAL SOLVABILITY... 3

 

j 

b 

a 

r 

c 

 

e 

Fig. 2.2. The nodes a, b, c, e, r and j that correspond to a window w(r − j), and its incident nodes. None of these
nodes can be incident to any other window.

a 

 

b 

a 

d c 

b a d 

c b 

Fig. 2.3. A transformation that eliminates a link e(b − c) between windows w(a − b) and w(c − d) (in Figure 2.3a).
Edge e(b− c) is moved to the contour, and windows w(a− b) and w(c− d) are substituted by a single window, w(a− d) (in
Figure 2.3b).

window w(r− j), together with nodes a, b, c and e constitutes a set of six nodes in the graph. Since in the
absence of degenerate segments this is true for every window, then there can not be more than ν = [N/6]
segments.
Remark 2.1.

1. The number of windows can be larger if there are degenerate segments.
2. If there are free edges, then the number of free edges is less than ν.
3. If the degree of the graph was not bounded by 3 then the number of windows in the basic object

constructed for the graph would be strictly less than ν. This is because the nodes that form the
windows for d > 3 will be connected to a larger number of nodes in the graph that, in view of
property 2, can not form windows themselves.

2.1.2. Construction of the basic object. Consider the problem of constructing a basic object
that satisfies properties (1)–(4) above. This can be performed in two steps. In the first step, we can use
elementary procedures that are from known optimization algorithms [9], that are described below.
Step 1: Construction of a graph whose windows are not connected by the edges of the interior part.
It is known that optimization algorithms ensure an optimal solution is found by gradually eliminating
links between the windows by means of elementary network transformations. For this reason, they can
be used to construct a basic object such that nodes that form the windows are not interconnected. It is
useful to note that for the first step it is sufficient to use the procedure of checking and substitution of
no more than two edges on the contour.
There are four possible cases of elimination of links:
Case 1.1: We use the transformation that substitutes two windows w(a− b), w(c− d) (see Figure 2.3a),
with a single window w(a− d) and edge e(b− c) (see Figure 2.3b). In this case, the interior edge between
nodes b and c is moved to the contour.
Case 1.2: We use the transformation that substitutes three windows w(a − b), w(c − d), w(e − f) (see
Figure 2.4a), with two windows w(a− e), w(c− f), and the interior edge e(b− d) is moved to the contour
(see Figure 2.4b).
Case 1.3: Suppose the contour contains a segment Sb,f , and its endpoints are connected with an interior



4 I. GORAY
 

a 

 

b 

a 

d c 

b 

e 

f 

a 

d 

c 

b 

e 

f 

Fig. 2.4. A transformation that eliminates a link e(b − d) between windows w(a − b) and w(c − d) (in Figure 2.4a).
Edge e(b− d) is moved to the contour, and windows w(a− b), w(c− d), w(e− f) are substituted by two windows, w(a− e)
and w(c− f) (in Figure 2.4b).

 

a 

 

b 

a 

d 

b 

e f 

a 

d 

b 

m 

e 

f 

c l 

m 

k 
c 
l 
k 

Fig. 2.5. A transformation that eliminates a link e(b − f) between windows w(a − b) and w(e− f) (in Figure 2.5a).
Edges e(b− f) and e(c− l) are moved to the contour, and windows w(a− b), w(c− d) and w(e− f) are substituted by two
windows, w(a− e) and w(d−m) (in Figure 2-5b).

edge e(b − f). Suppose that Sb,f contains a node l that is a neighbour to node m on the contour, and
that is linked by an interior edge e(l − c) with another node that forms a window (see Figure 2.5a). In
this case, we use the transformation that substitutes three windows w(a − b), w(c − d), w(e − f) with
two windows w(a− e), w(m− d), and moves two interior edges e(b− f) and e(l − c) to the contour (see
Figure 2.5b). The edge e(l −m) is moved to the interior.

Case 1.4: This case differs from case 3 in that Sb,f does not contain any nodes that are connected with
a node that forms a window. In this case, we select a node l on Sb,f for which an interior arc e(l−s) goes
to a different segment that contains a node t that is a neighbour to node s on the contour (see Figure
2.6a). Then, we use the transformation that moves edges e(b−f), e(s− l) to the contour, and substitutes
windows w(a− b) and w(e − f) with two windows w(a− t), w(e − n) (see Figure 2.6b).

In all of these cases, an interior edge that joins two window nodes is eliminated from the set of interior
edges. The object that we construct after Step 1 can contain an arbitrary number of windows, but cannot
contain degenerate segments formed by nodes of degree d = 3. We can achieve this by elimination of
degenerate segments from the object as described as follows.

Case 1.5: Suppose that a degenerate segment contains node a that form two windows w(a− b), w(a− c)
(see Figure 2.7a). Suppose that node a has degree d = 3, and is connected to nodes k, l and n, none of
which form windows. To eliminate Sa,a, we use the transformation that moves two interior edges e(a− l)
and e(a−m) to the contour, and substitutes windows w(a− b) and w(a− c) with two windows w(s− b),
w(t− c) (see Figure 2.7b).

Case 1.6: If at least one of nodes k, l and m forms a window, then the degenerate segment Sa,a is
eliminated from the object by either of Cases 1.1 and 1.2 above.

We note that the above cases are sufficient to eliminate all interior edges between windows, and all
degenerate segments, which completes Step 1.

Step 2: Introduction of additional windows

We can introduce additional windows if there are special structures involving the free edges in the object
formed in Step 1. Recall that the free edges are those that are not incident to any window nodes. We
note that introduction of additional windows should not introduce any links, or else property 1 will be
violated.



ON POLYNOMIAL SOLVABILITY... 5

a b 

a 

t 

b 

e f 

a 

b 

m 

t 

f 

s l 

m 

k 
s 
l 
k 

e 

Fig. 2.6. A transformation that eliminates a link e(b − f) between windows w(a − b) and w(e− f) (in Figure 2.6a).
Edges e(b− f) and e(l− s) are moved to the contour, and windows w(a− b) and w(e− f) are substituted by two windows,
w(a− t) and w(e−m) (in Figure 2.6b).

a 

a 

 

b 

l 

c 

s 

b 

a 

b 

m l 

s 

k t 

m 

k c 

t 

Fig. 2.7. A transformation that eliminates a degenerate segment containing a node with degree d = 3 (in Figure 2.7a).
Edges e(a− l) and e(a−m) are moved to the contour, and windows w(a− b) and w(a− c) are substituted by two windows,
w(b− s), w(c− t)(in Figure 2.7b).

The windows are added by means of elementary transformations of one free edge to the contour, and two
edges of the contour to the interior. There are two cases when it is possible to introduce an additional
window to the object formed in Step 1:

Case 2.1: Suppose that an object formed in Step 1 contains free edges e(k − l), e(m − n) and e(s− t)
such that m is a neighbour of t on the contour, k is a neighbour of s on the contour, and k and m are
on different sides of edge e(s− t). Nodes l and n can be anywhere on the contour (see Figure 2.8a). An
additional window w(k−m) is introduced by the transformation that moves interior edge e(s− t) to the
contour, and moves edges e(k − s) and e(t−m) to the interior (see Figure 2.8b). This transformation is
also valid if one or both of the edges e(k − l) and e(m− n) are not present. In this case, one or both of
nodes k and m will have degree 2.

Case 2.2: Suppose than on object formed in Step 1 contains free edges e(k − l), e(m− n) and e(s− t),
such that m is a neighbour of t on the contour, and k is a neighbour of s on the contour, and nodes k,
m and n are all on the same side of edge e(s − t), and a window w(a − b) exists (see Figure 2.9a). An
additional window can be formed by a transformation of the part of the contour bounded by nodes m and
k. In Figure 2.9a, this is the part of the contour to the left of edge e(s− t)) to become a segment between
nodes a and b (see Figure 2.9b). As a result of this transformation, we substitute window w(a − b) with
windows w(a − k) and w(b −m). This transformation is also valid if one or both of the edges e(k − l)
and e(m− n) are not present. In this case, one or both of nodes k and m will have degree 2.

Therefore, in both cases, if we have a special configuration of free edges, we can construct additional
windows so that the edges e(k−l), e(m−n), e(s−t) are no longer free. If the object contains configurations
analogous to those considered above (see Figures 2.8a, 2.9a), then additional edges should be moved to
its contour. We note that none of these transformations should be performed if they result in degenerate
segments that contain a node whose degree d = 3.

A basic object is completed if it is does not contain free edges that could lead to the introduction of
additional windows using the transformations described above. In such a case, we say that the number
of windows in the object is maximal. Note that depending on the construction of the graph, it may be
possible to construct a different object containing more windows, but it is not necessary to do so. A basic
object may contain one or more free edges, if the configuration of those free edges does not coincide with



6 I. GORAY
 

s 

a 

 

b 

m 
t 

k 

l 

m 

t s 

n 

l 

k 

n 

Fig. 2.8. A transformation that creates a windows w(k −m) (in Figure 2.8b), using free edges e(s− t), e(k − l) and
e(m− n) (in Figure 2.8a).

 

a 

a 

 

b 

m t 

l 

m 

s 

n 

l 

k 

n 

s 

b 

k 

b 

t 
a 

Fig. 2.9. A transformation that creates an additional window by moving a part of the contour bounded by m and k

between a and b that form window w(a − b) (in Figure 2.9a). This transformation substitutes window w(a − b) by two
windows, w(a− k) and w(b−m) (in Figure 2.9b).

those described above. This is the only criteria required to complete the second step of the construction
of a basic object.

2.2. Second basic object. The second basic object should possess the same properties (see
Subsection 2.1.1) as the first basic object. The second basic object is constructed from the first basic
object. The two basic objects will have no common interior edges. This requires us to introduce additional
restrictions in the algorithm for constructing the second basic object, that is otherwise analogous to the
algorithm that constructs the first basic object. These restrictions concern the structure of the contour,
and specify the nodes which cannot not become window nodes in the second basic object. We satisfy
these new requirements in the first step of the construction of the second object.

2.2.1. Preliminary formation of the second basic object. Suppose that the first basic object
is constructed, and satisfies all of the required properties. Then, we identify:

(1) The window nodes, and the interior edges incident to these nodes. The number of such edges
will be either two (if the node has degree d = 3), or one (if the node has degree d = 2).

(2) The free edges.
(3) Degenerate segments that contain a single node of degree d = 2.
(4) The set of nodes with degree d = 2 that do not form windows.

Note that the first basic object cannot contain any interior edges or nodes of degree d = 2 that can
be different from the cases described above. This phenomenon is determined by the properties of the
construction of the first basic object: the original graph has degree d ≤ 3; the windows of the first basic
object are not linked by interior edges; and the first basic object does not contain degenerate segments
of degree d = 3.
The first basic object is constructed without restrictions on the contour edges, interior edges, or on the
configuration of nodes with degree d = 2. The construction of the second basic object depends on the
particular structure of the first basic object.
Algorithm of the preliminary construction of the second basic object:

(1) Identify in the first basic object:
(a) Chains that consist of two interior edges that are both incident to a window node of degree

d = 3.



ON POLYNOMIAL SOLVABILITY... 7

 

                   

 

a 

a 

 

b 

m 
c 

n 

b 

d 

 

 

a 
k 

n 

b 

d c 

m 

k 

Fig. 2.10. A transformation that allows us to delete node c from the list of candidates for window nodes by elimination
of the link between windows w(c−m), w(d− n) (see Figures 2.10a and 2.10b).

 

k 

 

                   

 

a 

a 

 

b 

m 

c 

b 

f 

e 

 

n 

l 

s d 

k 

 

 

a 

m 
c 

b 

f 

 

e 

 

n l 

s 

d 

Fig. 2.11. A transformation that allows us to delete nodes b and c from the list of candidates for window nodes by
elimination of the link between windows w(b−m), w(l− n) (edge e(b− l)), and between windows w(c− e), w(k− f) (edge
e(k − c)) (see Figures 2.11a and 2.11b).

(b) Interior edges that are incident to the window nodes of degree d = 2. These nodes will form
windows in the second basic object as well.

(c) Free edges.
(d) Chains that consist of two interior edges incident to a node of degree d = 2 that form a

degenerate segment.
(e) Nodes of degree d = 2 that do not form windows. These nodes will form degenerate segments

in the second basic object.
(2) The identified chains consisting of two edges, free interior edges, and the degenerate segments of

degree d = 2 all move to the contour, and are all separated by windows.
(3) Connect the nodes of the contour in the second basic object by interior edges that belong to the

contour of the first basic object.
(4) Now, we eliminate some interior edges some interior edges from the second basic object that

cannot be moved to the contour. These are edges that are:
(a) Incident to window nodes of degree d = 2.
(b) Incident to window nodes in the first basic object, and belong to its contour.

(5) Mark those nodes that cannot form windows. By means of the first two algorithms of eliminating
links between windows (see Subsection 2.1.2, Cases 1.1 and 1.2) move, to the contour, interior
edges incident to these marked nodes.

(6) Mark edges of the contour that cannot be moved to the interior.

Remark 2.2.

(A) Consider, in more detail, the possible situations of the appearance of nodes in the second basic
object that cannot form windows (corresponding to step (5) above), and the elimination of those
nodes. Suppose that in the first basic object, there are window nodes of degree d = 2. Then, if
edge e(a − c) that is incident to node a belongs to the contour of the first basic object, then the



8 I. GORAY

 

 

 

 

 
 

 

 

 

11 

10 

18 

20 

25 

8 

15 

22 

24 

17 

4 

3 

23 

14 

9 

12 

2 

7 

5 

6 

1 

 

  

21 19 

 
16 

13 

Fig. 2.12. Configuration of individual edges, chains of two edges, and windows needed to form the contour of the
second object.

second basic object will contain on the contour an edge e(a−b) incident to the same node a, which
again forms a window in the second basic object (see Figure 2.10a). In the second basic object
the node c should not form a window. If it does, then the second basic object violates the rules
outlined in Section 2. In this case, by removing a link between windows w(c−m) and w(d−n), we
can delete node c from the candidates to form windows in the second basic object. We eliminate
this link (interior edge e(c− d)) in one of two ways described in Section 2. In Figure 2.10a, the
positions of windows w(c−m) and w(d−n) imply that the first method should be used. In another
configuration of those windows, the second method would be used. The situation when nodes a
and c have degree d = 2 (edge e(c− d) is not present) cannot happen, because two adjacent nodes
of degree d = 2 are substituted by a single node of degree d = 2.

(B) Suppose that the first basic object contains node a of degree d = 2 that does not form a window,
and edges e(a − b) and e(a − c) belong to the contour. Then, node a should form a degenerate
segment in the second basic object, and nodes b and c should not form windows (see Figure 2.11a).
If this condition was violated, then the second basic object would have windows linked by interior
edges, which would violate the rules outlined in Subsection 2.1.1. As in item (A) above, nodes b
and c are eliminated from the set of nodes that can form windows in the second basic object by
temporarily deleting edges e(b − l), e(c − k), between pairs of windows w(b −m) and w(l − n),
and w(c − e) and w(f − k) respectively (see Figure 2.11b). The situation when nodes a and c,
and a and b have degree d = 2 (edges e(b− l) and e(c− k) are absent) is not possible, as two or
more adjacent nodes of degree d = 2 can be substituted by a single node of degree d = 2.

We note that elimination of links between windows by means of the algorithms described in Subsection
2.1.2, Cases 1.1 and 1.2, are performed so as to substitute one of the two windows of the contour by a
single interior edge. By doing this, neither edge of the contour is moved to the interior.

Remark 2.3.

(A) One of the properties of the basic objects is that they have a disjoint set of interior edges. In the
preliminary construction of the second basic object, the interior edges of the first basic object are
all moved to the contour of the second basic object. During the subsequent steps, their movement
to the interior will be prohibited.

(B) This restriction on moving these particular contour edges to the interior is achieved by temporarily
deleting interior edges that cannot belong to the contour (item (4) above). Then, the subproblems
of the construction of the second basic object whose windows are not linked by interior edges, and
of the introduction of additional windows into the second basic object, are performed as outlined
in Subsection 2.1.2. This completes the preliminary construction of the second basic object.

2.2.2. Completion of the second basic object. Construction of the second basic object is
performed using the same algorithm as the construction of the first basic object, that is, the construction
of an object whose windows are not linked by interior edges, and the subsequent introduction of additional



ON POLYNOMIAL SOLVABILITY... 9

 

 

 
 

 

 

11 

10 

18 

20 

25 

8 

15 

22 

17 

4 

3 

23 

14 

9 

12 

2 

7 

5 

6 

1 

 

  

21 19 

 
16 

13 

24 

Fig. 2.13. The second basic object, in which the missing interior edges belonging to the contour of the first basic object
are added.

 

 

 

 
 

 

 

 

11 

10 

18 

20 

25 

8 

15 

22 

17 

4 

3 

23 

14 

9 

12 

2 

7 

5 

6 

1 

 

  

21 19 

 
16 

13 

24 

Fig. 2.14. The second basic object, with deleted interior edges that can not belong to its contour. Node 24 that can
not form a window is marked.

windows.
Consider the following example.
Example 2. In Figure 2.1, the first basic object for a certain 25-node graph is displayed. The construction
of the second basic object proceeds as follows:

(1) In the first basic object, we select:
(a) Chains of the interior that consist of two edges incident to the window nodes: e(16 − 14),

e(14− 13); e(4− 10), e(10− 11); e(1− 6), e(6− 5); e(7− 2), e(2− 3); e(21− 18), e(18− 19).
(b) Interior edges that are incident to window nodes of degree d = 2: e(20− 25).
(c) Free edges: e(8− 15), e(22− 24), e(17− 23), e(9− 12).

(2) The above selected edges separated by windows, form the preliminary contour (see Figure 2.12):
(16-14-13 W 4-10-11 W 1-6-5 W 7-2-3 W 21-18-19 W 20-25 W 8-15 W 22-24 W 17-23 W 9-12).

(3) Connect nodes (see Figure 2.13) by interior edges that were not selected in (1), and correspond to
contour edges in the first basic object: e(1− 2), e(1− 3), e(3− 4), e(4− 5), e(5− 11), e(11− 12),
e(12 − 13), e(13 − 19), e(19 − 20), e(20 − 21), e(21 − 22), e(22 − 23), e(23 − 24), e(24 − 25),
e(14− 15), e(15− 16), e(16− 17), e(17− 18), e(9− 10), e(8− 9), e(7− 8), e(6− 7).

(4) From the set of interior edges, we temporarily remove those edges that cannot be moved to the
contour of the second basic object: e(17− 18), e(14− 15), e(6− 7), e(1− 2), e(9− 10), e(24− 25)
(see Figure 2.14). Once these edges are temporarily removed, node 25 becomes an end node (that
is, node 25 acquires degree d = 1), and nodes 24, 9, 15, 1, 7, 17 acquire degree d = 2.



10 I. GORAY

 

 

 

 

 
 

 

 

11 

10 

18 

20 

25 

8 

15 

17 

23 

24 

4 

3 

22 

14 

9 

12 

2 

7 

5 

6 

1 

 

  

21 19 

 
16 

13 

Fig. 2.15. An object in which node 24 is deleted from the list of nodes that can form windows, by means of eliminating
the link between windows w(9− 23), w(17 − 24).

 

 

16 

3 

1 

6 

 

 

 

5 

4 

13 

19 

18 

21 

20 

10 

8 

24 

12 

23 

7 

2 

 

 

 

15 14 

11 

 

 
25 

22 

 17 
9 

Fig. 2.16. A segment of the second object where the links between windows are eliminated by means of interior edges.
Free edges e(19−20), e(5−11), e(3−4), e(12−13) are identified that determine a possibility of forming additional windows.

(5) Mark the nodes that cannot form windows. In this example, node 24 can not form a window.
This node is circled (see Figure 2.14). By the algorithm of eliminating links between window
nodes (see Subsection 2.1.2, Case 1.2), we move the edge e(23− 24), incident to node 24, to the
contour. This completes the preliminary construction of the second basic object (see Figure 2.15).

We note that the second object at this stage does not contain window nodes of degree d = 2. For this
reason, this second object does not contain degenerate segments. The edges of the contour of the first basic
object that should also belong to the contour of the second basic object, and therefore cannot be moved to
its interior, are displayed in bold (see Figure 2.15).

An object whose windows are not linked by interior edges (see Figure 2.16) is constructed using the
algorithm described in [9] (which uses the steps outlined in Subsection 2.1.2, Cases 2.1–2.4). At this
stage, construction of the object whose windows are not linked by interior edges is complete.

The next step is to introduce additional windows. We use the same algorithm (in Subsection 2.1.2) that
was used in the construction of the first basic object. If we encounter an instance where an additional
window can be introduced by means of free edges, then we introduce this window and continue to search
until all instances are exhausted. In our example (see Figure 2.16), there are at most four possibilities
of introduction of an additional windows. The object contains four free edges: e(12 − 13), e(3 − 4),
e(9− 11), e(19− 20), that determine the number of possibilities. Consider all possible ways to introduce
an additional window by using any of the listed four free edges.



ON POLYNOMIAL SOLVABILITY... 11

 

 

 

 

3 

4 

19 

21 

20 

6 

10 

14 

24 

12 

23 

16 

15 

8 

7 

2 

 

 

 

13 18 

11 

 

 17 
9 

5 

22 

 

25 

1 

Fig. 2.17. A segment of the second object where an additional window is formed by means of moving, between window
nodes 22 and 25, the segment S1,5.

 

 

 

 

 

 

3 

1 

12 

17 

23 

25 

6 

14 

18 

4 

19 

16 

15 

8 

7 

2 

 

 

13 9 

5 

 

10 

20 

21 

24 

 

 

             

22 

11 

Fig. 2.18. A segment of the second object where an additional window w(11−19) is formed by moving edge e(12−13)
to the contour, and edges e(11− 12), e(19 − 13) to the interior.

 

 

 

 

3 

1 

19 

21 

20 

24 

6 

14 

9 

11 

12 

16 

15 

8 

7 

2 

 

 

13 17 

5 
10 

23 

17 

22 

25 

             

 

 

 
4 

Fig. 2.19. A segment of the second object, where additional window w(4− 12) is formed by moving edge e(5− 11) to
the contour, and edges e(4− 5), e(11− 12) to the interior.



12 I. GORAY

 

 

10 

11 

14 

19 

18 

12 

15 

24 

1 

22 

8 

7 

2 

3 

4 

16 13 

9 
6 

23 

 

20 

5 

21 

             
25 

17 

Fig. 2.20. The second basic object where temporarily deleted interior edges are reinstated. Common contour edges
are marked with dashed lines.

(1) There exists a free edge e(5 − 11) and node 1 of degree d = 2 that are adjacent to the free edge
e(3− 4) on one side (see Figure 2.16). An additional window is introduced by moving part of the
contour bounded by nodes 1 and 5 between any two nodes that form a window. In this example,
window w(22− 25) or w(9− 17). We move this part of the contour between nodes 22 and 25 (see
Figure 2.17).

(2) Free edges e(5 − 11) and e(19 − 20) are adjacent to free edge e(12 − 13) on two different sides
(see Figure 2.16). An additional window w(11 − 19) is introduced by moving edge e(12 − 13) to
the contour, and edges e(11− 12) and e(19− 13) to the interior (see Figure 2.18).

(3) Free edges e(3− 4) and e(12− 13) are adjacent to free edge e(5− 11) on two different sides (see
Figure 2.16). An additional window w(4 − 12) is introduced by moving edge e(5 − 11) to the
contour, and edges e(4− 5) and e(11− 12) to the interior (see Figure 2.19).

(4) Free edge e(19− 20) (see Figure 2.16) can not be used to introduce an additional window because
node 20 does not have adjacent nodes that satisfy the possibility of introduction of additional
windows (edge e(21− 22) is not a free edge, and node 25 forms a window).

From all of these possibilities, only one can be implemented. Two or more possibilities can not be
implemented in this example because, otherwise, the condition of absence of links between windows will be
violated. The second object with the temporarily deleted edges being reintroduced is displayed (see Figure
2.20). Comparing the first (see Figure 2.1) and the second basic objects (see Figure 2.20) we observe the
following:

1. The sets of interior edges for each basic object are disjoint.
2. The contours for each basic object contain a number of common edges: e(3 − 4), e(11 − 12),

e(7− 8), e(15− 16), e(13− 19), e(21− 20), e(23− 24), that appeared during the construction of
the second basic object. These edges are marked by dotted lines (see Figure 2.20).

3. No links exist in either basic objects.

3. Selection of edges and windows. Suppose that we have constructed both basic objects for a
graph of degree d ≤ 3. Suppose that such a graph contains one or more Hamiltonian cycles. Edges of
the graph can be naturally separated in three disjoint groups:

(1) Edges that belong to all Hamiltonian cycles.
(2) Edges that belong to no Hamiltonian cycles.
(3) Edges that belong to some but not all Hamiltonian cycles.

Some edges from both basic objects can be separated into two disjoint groups:

(1) Interior edges of both basic objects (these sets of disjoint).
(2) Common edges of the contours of both basic objects.

The procedure of selection of edges includes not only separation into group, but also the assigning of
weights to some edges that determines the weights of all other edges, and of windows in both basic
objects. The assigning of weights can be performed for an additional edge or window of the contour, or



ON POLYNOMIAL SOLVABILITY... 13

to a group of edges and windows.

3.1. Assigning of weights to the edges of both basic objects.

3.1.1. Selection of contour edges and windows. To any edge of the contour, a weight can be
assigned. We assign a particular weight (-1, 0, or +1) to an edge or window of the contour of a basic
object, that determines the weights of all other edges and windows of the basic object. Initially, the
weights of all edges and windows are 0. Suppose that we select a contour edge e(m− n). If N is odd, we
assign weight -1 to this edge, and then we perform the following operations:

1. Assign weight -0.5 to nodes m and n.
2. Moving along the nodes of the contour, starting with node s adjacent to node m we assign to

each node alternating weights +0.5, -0.5.
3. The weight of every edge and every window is assigned by adding the weights of their adjacent

nodes. With this approach we obtain:
(a) The weight of one particular edge (edge e(m− n)) becomes -1.
(b) The weight of all contour edges and windows other than e(m− n) remain 0.
(c) Any interior edge attains the weight attains a value that can be -1, 0 or 1.

We could also assign the initial weight of -1 to a window w(k − l), and perform the same operations as
above.

If N is even, we assign weight 0 to edge e(m− n), and then we perform the following operations:

1. Assign weights +0.5 to node m, and -0.5 to node n.
2. Moving along the nodes on the contour, starting with node t adjacent to node m we assign to

each node alternative weights -0.5, +0.5.
3. The weight of every edge and every window is assigned by adding the weights of their adjacent

nodes. With this approach we obtain:
(a) The weight of all contour edges and windows (including e(m− n)) remain 0.
(b) Any interior edge attains the weight attains a value that can be -1, 0 or 1.

Consider the result of the selection of edges of a basic object, assuming that the contour of this basic
object is a fictitious Hamiltonian cycle. A fictitious Hamiltonian cycle is a contour of a basic object
whose windows, initially, have the same 0 weight as its edge. Suppose that a graph contains one or
more Hamiltonian cycles. Suppose that one of the contour edges is selected and assigned a weight of -1.
Independently of whether or not this edge belongs to a Hamiltonian cycle, the combined length of any
Hamiltonian cycle will be equal to -1. If the selected edge is given a weight of +1, then the length of
every Hamiltonian cycle will also be +1. This is because, on the contour, by our assumption, a fictitious
Hamiltonian cycle, where the windows become fictitious edges with 0 weight, and the selection of any
edge or window implies the same change in the length of any real Hamiltonian cycles as the same of any
fictitious Hamiltonian cycle. Consider the following cases:

(1) Suppose that a selected edge belongs to all Hamiltonian cycles. Then, by the construction of
one such Hamiltonian cycle, part of the contour edges should be substituted by interior edges.
Since the combined weight of the substituted contour edges equals 0, and the total length of the
Hamiltonian cycle is determined by the weight of the selected edge, then the combined weight of
the interior edges that substitute the contour edges should also be 0.

(2) Suppose that the selected edge of weight -1 belongs to a some but not all Hamiltonian cycles.
Regardless of which Hamiltonian cycle is constructed (with or without this edge), the combined
weight of the interior edges that substitute contour edges in the Hamiltonian cycle will be equal
to the combined weights of those contour edges. If the selected edge belongs to the constructed
Hamiltonian cycle, then this combined weight will be 0. If the selected edge does not belong to
the constructed Hamiltonian cycle, then the combined weight will be -1.

(3) Suppose that the selected edge of weight -1 does not belong to any Hamiltonian cycle. Then,
in the construction of a Hamiltonian cycle, this edge should be substituted, and the combined
weight of the interior edges that are used in the Hamiltonian cycle, and the combined weights of
the contour edges that are not used in the Hamiltonian cycle, will be -1.

(4) Suppose that we select a window of weight -1. It can be considered as a fictitious edge that
does not belong to any Hamiltonian cycle, and so should be substituted by an interior edge. In
this case, the previous argument is valid: in the construction of a Hamiltonian cycle that does
not contain the selected window, the combined weights of the interior edges that are used in



14 I. GORAY

the Hamiltonian cycle, and the combined weights of the contour edges that are not used in the
Hamiltonian cycle, will be -1.

(5) The claims (1)–(4) are valid in the case of selection of any contour edge or window in either basic
object. However, one can select a set of contour edges and/or windows. Since in the construction
of a Hamiltonian cycle, relative to any selected contour edge or window, the combined weight
of the substituting interior edges is equal to the combined weight of the contour edges that are
being substituted, this property will be valid for any number of simultaneously selected contour
edges and windows.

Hence, the common argument is the following:
1. In the construction of a Hamiltonian cycle, the combined weight of substituted contour edges

and windows is equal to the combined weight of the substituting interior edges, and this effect
does not depend on whether selected edges belong to the Hamiltonian cycle.

2. If we simultaneously select a set of contour edges and windows then the combined weights of the
substituting interior edges, and this effect does not depend on whether selected edges belong to
the Hamiltonian cycle.

We note that the assigning of weights in turn assigns weights to the edges of the basic objects. However,
it is also convenient to assign weights to the nodes of the basic objects. If a node is assigned -0.5 or +0.5,
then it is means that edges incident to this node gain the weight -0.5 or +0.5.

3.1.2. Selection of a group of edges. We can select not just a single edge, but a group of edges.
Suppose that two basic objects of the same graph are constructed. The contours of both basic objects
contain common contour edges. Each edge of this group could or could not belong to a particular
Hamiltonian cycle, if any exist. Now we solve the problem of selection of common contour edges. By
means of this subproblem, we will define some characteristics of the basic objects that will determine the
Hamiltonicity of the graph.
The procedure of selection of common contour edges is as follows. The task is to select common contour
edges of basic objects under the following conditions:

1. The weights of the nodes incident to common contour edges in each basic object should be
identical.

2. The weights of the common contour edges could be -1, 0 or 1.
3. The interior edges of both basic objects should have 0 weights. If this is impossible, the correction

procedure is performed (see Subsection 3.2.3) and then the combined weight of interior edges
should be 0 for each object.

Remark 3.1. We can formulate a dual to the subproblem of selecting common contour edges of the basic
objects. It differs from the above problem by the condition that the contour edges that are not common
should all have zero weight.
We can request, in both primal and dual subproblems, that weights of the nodes incident to common
contour edges should be identical, not only in both basic objects, but in both subproblems as well. In
this case, the difference in the solution of this subproblem will be in assigning weights to other nodes
that are not incident to common contour edges. In the primal subproblem, weights of those nodes should
be assigned in such a way that all interior edges have zero weights. In the dual subproblem, the contour
edges that are not common for both basic objects should have 0 weight. These two can be simultaneously
achieved. Furthermore, we show that the solution of each of these subproblems can be used to solve HCP.

3.2. Assigning of weights to edges of the objects.

3.2.1. Selection of common edges of contours of the objects. Assigning of weights to edges
of the objects is a part of the solution to HCP. First, we will consider examples of assigning weights
to contour edges and interior edges that satisfy the required conditions. Also, we will determine the
sequence of such assignment algorithm.

(1) Determine the set of contour edges for each object. The set of common contour edges is
determined by comparing the two sets of contour edges together.

(2) One of the conditions of assigning weights to the edges implies that the nodes of the common
contour edges should have identical weights in both objects. For this reason, these nodes, and
the contour edges between them, should be selected as a separate subgraph common to both
objects.

On the basis of two objects, select a subgraph that contains:



ON POLYNOMIAL SOLVABILITY... 15
 

- 

 

 

 11 

15 

4 

8 

-  1 

7 

20 

19 

13 

12 

 
 

23 25 

 

2 

10 

9 

16 

 

17  

 

4 

13 

11 

15 

8 

7 

2 

3 

 

 

16 
19 

12 

 

23 

24 

20 

 

6 

24 

22 

 

 
18 

             14 

21 
- 

- 
- 

- 

- 

- 

- 

- 

- 

- 
- 

3 

- 

- 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

14 

18 

21 

 

10 

+ 

- 
- 

- 

- 

+ 

- 

+ 

+ 

+ 
+ 

- 

- 

- 

- 

+ 

- 

- 

- 

- 

+ 

- 

+ + 

-1 

-1 

-1 

+1 

-1 

-1 

-1 

+1 

+1 

 

-1 

-1 

-1 

+1 

-1 

+1 

+1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

17 

             
25 

22  

5 

+1 

9 1 

 
+1 

+1 

-  5 

+  6 

-1 

-1 
+1 

Fig. 3.1. Two basic objects, where the weights of the nodes are displayed next to the node numbers. The nonzero
weights of the edges is displayed next to the edges.

 

 

 

 

 

11 

15 

4 

8 

7 

+ 20 

19 

13 

12 

 
 

23 

 

2 

16 

 

14 

+ 24 

 

 

18 

              14 

21 
- 

- + 

- 

- 

- 

- 
- 
3 

- 

- 

+ 

+ 

+ 

22 

 

+ 5 

+ 10 

 

25  - 

Fig. 3.2. Selected subgraph that determines the weight of the nodes incident to common contour edges.

1. Common contour edges.
2. Edges of each object that link two common contour edges. In both objects, they are the same.
3. Interior edges that are incident to window nodes. These sets will be disjoint for each object.

Consider the following example of the selection of a subgraph for the two objects displayed in Figure 3.1.

Example 3. The subgraph (see Figure 3.2) consists of the following edges:

1. Edges e(3− 4), e(11− 12), e(13− 19), e(20− 21), e(23− 24), e(15− 16), e(7 − 8) are common
contour edges.

2. Interior edges e(12− 13) and e(19− 20 that link common contour edges.
3. Pairs of edges that in each object incident are incident to the window nodes. In the first object

they are e(18− 19), e(18− 21); e(10− 11), e(10− 4); e(2− 3), e(2− 7); e(14− 13), e(14− 16).
In the second object they are e(20− 21), e(20− 23); e(5− 11), e(5− 4). For the node 25 having
d = 2 edges e(25− 20), e(25− 24).

(3) For the nodes of the selected subgraph, we need to assign the weights. This algorithm has to
satisfy a number of conditions, as follows.
(3.1) The nodes that are incident to common contour edges should have equal weight in both

objects. Because the subgraph is common in both objects, then the weights assigned to its
edges will be the same in both objects.

(3.2) The weight of the common edges can be -1, 0 or +1.
(3.3) The edges of the subgraph that link nodes incident to common contour edges should have



16 I. GORAY
 

 

 

+ 20 -19 - 21 

-13 - 19 

12 -11 - 13 

+ 

-8 15 - 7 

+ 

+ 24 - 23 

-3 - 4 

-16 

Fig. 3.3. Selected islands of the subgraph that determine the weights of the nodes.

 

 

 

+(-)        -(+)        +(-) 

-(+)        +(-)        +(-) 

 +(-)        -(-)        +(+)       -(+) 

 +(-)        -(+)        +(-)       -(+) 

-(+)        +(-)        -(+)        +(-)         -(+)       -(+)      

-(+)        +(-)        -(+)        +(-)         -(+)       +(-)      

Fig. 3.4. The set of chains that determines the possibilities of assigning weights to the nodes on the islands.

0 weight.
(3.4) The pairs of edges that are adjacent to a window node of degree 3, that in one object

are interior edges, should have 0 weights. In the other object, this pair of edges will be
contour edges and the weight of these edges is not yet determined, and could be -1, 0 or +1
depending on other weight assignments.

Example 4. Consider an example of weight assignment for the subgraph shown in Figure 3.2.

(A) To all window nodes, we assign the weight +0.5. In Figure 3.2 (and other figures) we represent
this assignment only by displaying the sign of the weight. These nodes are nodes 2, 10, 18, 14,
22, 5 and 25. In general, we can assign to these nodes the weight +0.5 or -0.5. If there is a
node in the subgraph linked to two window nodes, then the two window nodes should be assigned
the same weight, either +0.5 or -0.5 simultaneously. In this example, the weights for nodes 2,
14 and 25 can be assigned independently. The weights of nodes 18 and 22, however, must be the
same as each other. This is because edges e(18− 21) and e(22− 21) are incident to node 21, that
is incident to the common contour edge e(20− 21). This is determined by the fact that two edges
e(18 − 21) and e(22 − 21) are interior edges (one edge is interior in one object, and the other
edge is interior in the other object), and should therefore have 0 weight. An analogous argument
is valid for nodes 10 and 5, for which the weight should therefore be equal.

(B) Because the weight of the edges incident to window nodes 2, 10, 18, 14, 22, 5 and 25 should
be equal to 0, then nodes 23, 21, 19, 13, 11, 4, 3, 7, 16, 20, 24 have weight -0.5. Since edge
e(20− 19) is interior in one of the basic objects, and has weight -1, then we need to reassign the
weight of one of the windows nodes from +0.5 to -0.5. Nodes 19 and 20 that are incident to this
node in both object have interior edges that link them to window nodes (18 and 25). The weight
of one of these nodes should be changed from +0.5 to -0.5. We assign the weight -0.5 to node 25
having d = 2. Then, nodes 20 and 24 should be assigned the weight +0.5.

(4) In the subgraph, we select islands that are parts of the subgraph such that their extreme
(endpoint) nodes have weights -0.5, or the weight is unassigned. An island can not contain
pairs of edges that are incident to window nodes. For this example, the islands are displayed



ON POLYNOMIAL SOLVABILITY... 17

in Figure 3.3. In assigning weights to nodes of an island, one can use patterns displayed in the
example of assigning weights to the nodes of chains, including different number of common edges.
If the subgraph contains chains with common contour edges (see Figure 3.4), then the extreme
nodes a and b of the chains can have any weights associated with the choice of the weight of
common edges, in particular, -0.5. In Figure 3.4, we display examples of assigning weights to
the nodes of chains containing one, two or three common edges. By variation of the choice of
weight for a particular edge, with any number of common edges in the chain, the extreme nodes
can be assigned equal or opposite weights. We note that the situation when the extreme nodes
are assigned opposite weights remains unchanged for any number of common edges in the chain.
Furthermore, we need to assign weights to nodes of the islands that can have only one value.
Such is node 12 whose weight can only be +0.5. We assign weights to chain 7− 8− 15− 16 (see
Figure 3.3). They are assigned according to the rule displayed in Figure 3.4. If, to node 8, we
assign the weight +0.5, then to node 15 we should assign the weight -0.5, and vice versa.

This completes the algorithm of selection of common contour edges, and assigning weights to the
corresponding nodes. As a result of this algorithm, the nodes that are incident to common contour
edges are assigned identical weights in both objects. Also, the edges of the subgraph that belong to three
selected sets are assigned admissible weights. In Figures 3.1, 3.2 and 3.3, the signs of the weights are
displayed next to the nodes.

3.2.2. Assignment of weights to the nodes of the objects. As a result of the selection of
common contour edges, some but not all nodes of the objects are assigned weights. The above algorithm
allows us to assign weights to the nodes incident to common contour edges, and also to the window nodes.
The next problem is to assign weights to the nodes that have not yet been assigned a weight. The missing
weights are assigned according to the condition that interior edges must have 0 weights, and are therefore
determined by the weights assigned already to other nodes in the above algorithm. In Figure 3.1, the
nodes whose weights are assigned at this step are circled. We note that objects may contain nodes whose
weights can not be assigned using the above conditions. For example, in Figure 3.1, nodes 1, 6 and 5
are not assigned weights. This is because nodes 1 and 5 are not incident to common contour edges. The
choice of weight of a window node (in this example, node 6) is made on the basis of comparison of the
sums of the weights of both objects, and is considered later. The weight of any edge is defined as the
sum of the weights of the nodes incident to this edge. In Figure 3.1, the zero weights are not displayed.

3.2.3. Algorithm for assignment of weights to the edges of the objects.

(1) Determine the contour edges for each object.
(2) On the basis of two objects, select a subgraph that contains:

(a) Common contour edges.
(b) Edges of each object that link two common contour edges. In both objects, they are the

same.
(c) The sets of interior edges that are incident to window nodes. These sets of disjoint for each

object.
(3) Assign weights to the nodes of this subgraph using the algorithm outlined in Subsection 3.2.1.
(4) Identify the islands in the above subgraph and assign weights to the nodes contained in the

islands using the algorithm also outlined in Subsection 3.2.1.
(5) Assign weights to remaining nodes using the algorithm outlined in Subsection 3.2.2.
(6) If in one or both objects there remains nodes without weights assigned, then we assign to those

nodes weights according to the rules will be described later.
(7) Determine the weight of the edges as the sum of the weights of the nodes incident to this edge.
(8) If, among the interior edges of one or both objects, there appears a nonzero weight, then we

apply the following correction algorithm for this object.
Correction algorithm

(1) Determine the sum of the weights of interior edges for both objects. Suppose that the sum is
−γ (+γ). The number γ can only be integer (-1, 0 or +1) because the weight of each edge is
determined by the sum of the weights of its adjacent nodes.

(2) Change the weight of the edges incident to γ nodes by +1 (-1) in such a way that the sum of
interior edges becomes 0. These edges cannot be
(a) Window nodes.
(b) Nodes incident to a common contour edges.



18 I. GORAY

 

 

 

 

 

 

- 9 

+  7 

- 

2 -1 - 

4 

-1 

8 

13 

15 

12 

- 

+  14 

+1 

 

+ 

5 3  

6 

+ 

11 

- 

  + 

 1 

- 

- 

-1 

- 

-1 

- 

-1 

+  16 

+1 

+  10 

 +1 

9 

- 

5 

+ 

 

 

 

 

 
- 8 

  7 

+ 

-1 - 

-1 

12 

15 

14 

-  10 

-1 

  1  +  

4 

- 

  + 

 13 

- 

- 

-1 

- 

+ 

-  11 

-1 

+  6 

-1 

- 

2 
- 

3 

16 

 

 
+1 

 +1 

Fig. 3.5. Two basic objects, where the weights of the nodes are displayed next to the node numbers. The nonzero
weights of the edges is displayed next to the edges. 

 

 

 

6 

1 

7 

11 

 

2 

8 

9 

+ 

- - 

+ 

10 

 

              

4   - 

 

12 

 3 
- 

+ 

13 

 -  15 

Fig. 3.6. Selected subgraph that determines the weight of the nodes incident to common contour edges.

(c) Nodes with degree d = 2.

At this stage, the general algorithm of assigning weights to the edges of the objects is complete. Next,
we consider examples of assigning weights to edges of objects.

Example 5. In Figure 3.5, we display two basic objects that satisfy all required conditions. Now we explain
how we assign weights to the edges of these objects.

(1) Determine the common contour edges. In Figure 3.5, the common contour edges are displayed
in bold, and they are e(2− 3), e(4− 8), e(12− 15), e(6− 11), e(7− 9).

(2) On the basis of these two objects, select a subgraph that contains:
(a) Common contour edges.
(b) Edges e(3 − 6), e(4 − 7), e(6 − 12), e(7 − 11) that link nodes incident to common contour

edges.
(c) Interior edges incident to the window nodes. These are e(10 − 11) and e(10 − 8) from the

first object, and e(1− 3), e(1− 4); e(13− 15), e(13− 18) from the second object.
(3) Assign weights to the nodes of the selected subgraph.

(A) To window nodes 10, 1, 13, assign weight +0.5. If there is a node in the subgraph linked to
two window nodes, then these window nodes must be assigned the same weight +0.5 (nodes
10 and 13).

(B) To nodes 11, 3, 4, 8, 15, that are linked with window nodes by a single edge, assign the
weight -0.5.



ON POLYNOMIAL SOLVABILITY... 19

 

 

7 - 4 9 

 -            +              

-15 

- 11 

-  

12 

+ 
- 3 6 

- 

2 

- 8 - 4 

-11 

Fig. 3.7. Selected islands of the subgraph that determine the weights of the nodes.

 

- 

 

 

20 

12 

13 

19 

 

 

15 

21 

 

1 

  6  - 

10 

 
+ 

8 

9 

 24 

+ 
- 

+ 

+ 

- 

+ 

+ 

- 

+ 

- 

- 

- 

+ 

- 

- 

 

-1 

-1 

-1 

-1 

-1 

 

 

-1 

 

 

 13 

25 

14 

24 + 

11 

10 

9 

12 

 

 

6 4 

 

 

5 

7 

 

 

18 

             

3 

8 
+ 

- 

+ 
- 

+ 

+ 

- 

+ 

- 

- 
15 

- 

- 

+ 

- 

+ 

+ 

+ 

- 

- 

- 

+1 -1 

-1 

+1 

+1 

-1 

17 16 

2 

1 

19 

20 

21 

23 
- 

-1 

22 

             

-1 

17 18 

14 

- 

             

4 

- 3 

7  - 

11 

5 

16 

+ +1 

23 

+ 

+ 

- 

2 

25 

+1 
22 

+ 

+1 

+1 

+ 
- 

Fig. 3.8. Two basic objects, where the weights of the nodes are displayed next to the node numbers. The nonzero
weights of the edges is displayed next to the edges.

(4) In the subgraph, select the islands. The pairs of edges incident to a window node can not be
part of any island. Assign weights to the nodes in these islands. First, determine the nodes
whose weights are predetermined by previous weight assignments. In this example, nodes 7 and 6
can only have weight +0.5. This choice is determined by the condition that edges e(7− 11) and
e(3− 6) must have 0 weight. Then, the weight of node 12 can only be -0.5. The choice of weights
for nodes 9 and 2 can be taken arbitrarily. In our example, both edges are assigned the weight
-0.5. In Figures 3.5, 3.6 and 3.7, the weights are displayed next to the nodes.

(5) Assign weights to the nodes that have not been assigned a weight in the previous steps. They are
assigned in accordance with the condition that the weights of interior edges should be 0. The final
assignment of weights is displayed in Figure 3.5, where the weights of edges are also displayed.
The nodes for which the weights are determined during this stage are circled.

Example 6. In Figure 3.8, two basic objects satisfying the required conditions are displayed. We assign
weights to the edges of these objects.

(1) Determine the common contour edges. In Figure 3.8, the common contour edges are displayed
in bold, and they are e(3− 4), e(6− 7), e(9− 10), e(12− 13), e(14− 15), e(20− 24), e(18− 21).

(2) On the basis of these two objects, select a subgraph (see Figure 3.9) that contains:
(a) Common contour edges.
(b) Edges e(9− 12), e(20− 21), e(4− 10) that link nodes incident to common contour edges.
(c) Interior edges incident to the window nodes. These are e(8 − 9) and e(8 − 15); e(1 − 3),

e(1− 6); e(19− 13), e(19− 20); e(22− 21), e(22− 24) from the first object, and e(25− 13),
e(25− 14); e(5− 4), e(5− 6) from the second object.

(3) Assign weights to the nodes of the selected subgraph.
(A) To window nodes 8, 1, 19, 5, 22, 25, assign weight +0.5.



20 I. GORAY

 

 

 

 

- 15 

4 

19  +   

21 

+ 

+ 

8 

- 

6  

22  - 

- 20 

 

    + 

 1 

- 

  12 

 

5  +   

  25  + 

 
 

10 

7 

 
3 

18 

- 

 

 

+ 24 

-  14 

-   13 

 

 -  9 

Fig. 3.9. Selected subgraph that determines the weight of the nodes incident to common contour edges.

 

 

12 -13 - 9 

+ 

+ 

10 - 9 

-14 - 4 

-20 + 21 + 24 

-6 

- 

7 

- 

18 

- 4 

- 3 -15 

Fig. 3.10. Two basic objects, where the weights of the nodes are displayed next to the node numbers. The nonzero
weights of the edges is displayed next to the edges.

(B) To nodes 13, 9 , 4, 6, 3, 21, 20, 24, 14, 15, that are linked with window nodes by a single
edge, assign the weight -0.5. Since edge e(20 − 21) is interior in one of the basic objects,
and has weight -1, then we need to reassign the weight of one of the windows nodes from
+0.5 to -0.5. Nodes 20 and 21 that are incident to this node in both object have interior
edges that link them to window nodes (19 and 22). The weight of one of these nodes should
be changed from +0.5 to -0.5. We assign the weight -0.5 to node 22. Then, nodes 21 and
24 should be assigned the weight +0.5.

(4) In the subgraph, select the islands. The pairs of edges incident to a window node can not be part
of any island. Assign weights to the nodes in these islands. First, determine the nodes whose
weights are predetermined by previous weight assignments. In this example, nodes 10 and 12
can only have weight +0.5. This choice is determined by the condition that edges e(9− 12) and
e(4 − 10) must have 0 weight. Then, the weight of nodes 7 and 18 can be taken arbitrarily. In
our example, both edges are assigned the weight -0.5. In Figures 3.8, 3.9 and 3.10, the weights
are displayed next to the nodes.

(5) Assign weights to the nodes that have not been assigned a weight in the previous steps. They are
assigned in accordance with the condition that the weights of interior edges should be 0. The final
assignment of weights is displayed in Figure 3.8, where the weights of edges are also displayed.
The nodes for which the weights are determined during this stage are circled.

Example 7. In Figure 3.11, two basic objects satisfying the required conditions are displayed. We assign
weights to the edges of these objects.

(1) Determine the common contour edges. In Figure 3.11, the common contour edges are displayed
in bold, and they are e(1− 2), e(5− 6), e(7− 9), e(11− 12).



ON POLYNOMIAL SOLVABILITY... 21

 

 

 

 

 

 

- 5 

-  7 

 

1 - -1 

- 

+1 

10 + 

12 

11 

- 

 

- 

2 

9 

+ 

-1 

- 

-1 

 

-1 

-  6 

+  4 

 

- 1 

8 

- 

 

 

 

 

 
- 12 

  7 

  - 

- 
+ 

5 

6 

-  11 

  1   

9 

+ 

   

 2  - 

+ 

- 

-1 

- 

   10 

-1 

+ 

4 

 

 

-1 

-1 

8 + 

  + 

3 

 +1 

 3 

+1 

-1 

Fig. 3.11. Selected subgraph that determines the weight of the nodes incident to common contour edges.

 

 

 

-5 

+ 

3 

6 

 

2 - 

8 
+ 

- 

 

 

              

 

9 

 1 

4 + 

 11 
 12 

- 7 

Fig. 3.12. Selected subgraph that determines the weight of the nodes incident to common contour edges.

(2) On the basis of these two objects, select a subgraph (see Figure 3.12) that contains:
(a) Common contour edges.
(b) Edges e(5− 7), e(9− 11), e(9− 12) that link nodes incident to common contour edges.
(c) Interior edges incident to the window nodes. These are e(3 − 5) and e(3 − 2); e(8 − 6),

e(8− 7); from the first object, and e(4− 2), e(4− 6) from the second object.
(3) Assign weights to the nodes of the selected subgraph.

(A) In the subgraph there are nodes 2 and 6, that are linked to two window nodes. Node 6 is
linked to window nodes 4 and 8, and node 2 is linked to window nodes 3 and 4. In this case,
all window nodes 3, 4, 8 are assigned a weight +0.5.

(B) Nodes 2, 6, 5, 7 that are linked to the window nodes, are assigned a weight -0.5.
(4) In the subgraph, select the islands (see Figure 3.13). The pairs of edges incident to a window

node can not be part of any island. Assign weights to the nodes in these islands. First, determine
the nodes whose weights are predetermined by previous weight assignments. Because one of the
islands contains a link between nodes 9 and 12, then these nodes should be assigned opposite
weights. Assign weight +0.5 to node 9, and weight -0.5 to node 12. Then, the weight of node 11
must be -0.5. In Figures 3.11, 3.12 and 3.13, the weights are displayed next to the nodes.

(5) Assign weights to the nodes that have not been assigned a weight in the previous steps. They are
assigned in accordance with the condition that the weights of interior edges should be 0. The final
assignment of weights is displayed in Figure 3.11, where the weights of edges are also displayed.
The nodes for which the weights are determined during this stage are circled.



22 I. GORAY

 

 

 

- 5  -7             9             11            12 - 6 

 +             -             - 

-2  1 

- 

Fig. 3.13. Selected islands of the subgraph that determine the weights of the nodes.

 

 

12 

11 

 

5 

 

 

 
              

7 

-1 

4 

 8 

 6 

9 

2 

+1 

+1 

-1 

10 

+1 

3  + 1 

 

+1 

-1 

-1 

-1 

-1 

1 

Fig. 3.14. The second object with the changed weights of edges after the correction algorithm has been performed.

Remark 3.2. As follows from Figure 3.11, edge e(5 − 7) that links nodes incident to common contour
edges e(6 − 5) and e(7 − 9) is assigned a weight -1. In the second object, edge e(5 − 7) is an interior
edge. This weight assignment contradicts the condition that interior edges must have zero weight. After
performing the correction algorithm, which we now outline, we will still be able to perform the test for
Hamiltonicity of the graph. The underlying principal of the correction algorithm will be that in the basic
objects, the sum of weights of interior edges must be 0. We need to increase or decrease the weight of
the edges incident to a node of an object that contains an interior edge of nonzero weight. This node can
not be a window node (in this case, node 4 or 10), nor nodes that are incident to common contour edges
(in this case, nodes 1, 2, 5, 6, 7, 9, 11, 12), as the weights of these node should be the same in each
object. Therefore, in this example, we can only use nodes 3 and 8. We select node 3, and increase change
its weight from -0.5 to +0.5. This increases the weight of all edges incident to node 3 by +1. This will
ensure that the sum of weights of the interior edges in the second object is zero. The second object, with
the corrected edge weights, is displayed in Figure 3.14.
Therefore, we can now determine the sum of weights of the contour edges, and the sum of weights of the
windows. These parameters are necessary to determine the Hamiltonicity of the original graph.

4. Main theorem. Theorem 1. If both basic objects, after undergoing the algorithms outlined in
Section 3, have equal sums of weights of contour edges (L1 = L2), and equal sums of weights of their
windows (S1 = S2), then the original graph is Hamiltonian. If either of these equalities are violated, the
graph is not Hamiltonian.
Proof.

(1) On transformed objects:
Consider basic objects that we subject to testing. Suppose that we construct two basic objects.
They do not intersect on interior edges, or on uncommon contour edges. Suppose that the weight
assignment algorithm is completed.
We next take the union of both basic objects. The interpretation of the union of one basic object
with a second basic object is that we receive the first basic object, where the weight for each
edge is the sum of weights of that edge in each basic object. Thus, by finding the union of the
first basic object with the second, and also finding the union of the second basic object with the
first, we form two new basic objects that have the structure of the two original basic objects,
and equal weights. The interior edges of the first union object will consist of the uncommon
contour edges of the second basic object, and vice versa. If, in the first and second basic objects,
the sum of contour weights was the same (L1 = L2) and the sum of window weights was the



ON POLYNOMIAL SOLVABILITY... 23

same (S1 = S2), then in the union objects, the weight of the contour will increase by the sum of
weights of the common contour edges, which is equal in both objects. The weight of the interior
edges for each union object will be equal to the sum of weights of uncommon contour edges in the
alternate basic object. If L1 = L2, this implies that the sum of weights of interior edges in both
union objects will be the same. Thus, if in the first two basic objects, L1 = L2, and S1 = S2,
then likewise the sum of weights of contour edges, and windows, will be the same in the union
objects as well. Using analogous arguments, it can be seen that if L1 6= L2, or S1 6= S2, these
inequalities are preserved in the union objects as well.
We note that if we were required to perform the correction algorithm, that led to L1 = L2 and
S1 = S2, then these equalities will be preserved for the union objects as well. This is because
the sum of the weights of interior edges is equal to 0, and therefore will not change the sum of
weights of the contour edges in the union objects. If we now perform equivalent transformations,
which are described below, then the weight of interior edges in the union objects will become 0
by means of the transformations of the first kind listed below, that do not lead to the violation of
the equalities. If L1 6= L2, or S1 6= S2, then this inequalities will also be preserved in the union
objects after the correction algorithm is performed.
Suppose that in the first object the length of the Hamiltonian cycle was H1, and in the second it
was H2. Then in the union objects, it will be equal to H1 +H2. The interior edges of the union
objects will have weights -1, 0 or +1.

(2) On equivalent transformations.
Equivalent transformations are performed with the aim to confirm the equality of the length of
Hamiltonian cycles in the constructed basic objects. These lengths should be such that if interior
edges have zero weights, then the length of a Hamiltonian cycle in each basic object should be
equal to the length of its contour. Since the interior edges in the constructed basic objects have
weights -1, 0 and +1, an equivalent transformation would consist of consecutive annihilation of
weights of -1 and +1 of interior edges. These equivalent transformations can be divided into two
groups:
(a) The first group consists of the transformations that, while annihilating the weight of an

edge, does not change the length of the contour, and therefore does not change the length
of a Hamiltonian cycle.

(b) The second group consists of the transformations that do change the length of the
contour while annihilating the weight of an edge, and consequently change the length of
a Hamiltonian cycle by the same value simultaneously in two basic objects.

Consider an equivalent transformation of the first type. Suppose we can select k interior edges
of weight +1 and k interior edges of weight -1. We change the weight of k interior edges of
weight +1 by using weight -1 that is assigned to nodes that are incident to these interior edges,
excluding window nodes. Analogously, we annihilate the weight of k interior edges of weight -1
using weight +1 that is assigned to nodes that are incident to these interior edges, excluding
window nodes. This allows us to annihilate the weight of 2k interior edges.
Consider a transformation of the second type. This transformation is equivalent if, in both basic
objects, there appears a weight of the same sign. Suppose that H1 = H2 (L1 = L2, S1 = S2).
Then, the entire annihilation of the weights of interior edges requires adding the same number
of weights of the same sign in each basic object that leads to equal, simultaneous, change in the
length of a Hamiltonian cycle, by assigning zero weights to interior edges of both basic objects.
As in the previous case, the weights are added to nodes that do not form windows. The number
of added weights depends on the number of interior edges of one basic object with positive weight
(r+), and the number of interior edges in the same basic object with negative weight (r−).
Remark 4.1. It is possible to identify other equivalent transformations of the second type, using
window nodes, however all of them change the length of contour, and therefore a Hamiltonian
cycle by the same value.

(3) On Hamiltonian graphs.
Suppose that in two union objects, the sum of contour weights are equal (L1 = L2) and the sum
of window weights are equal (S1 = S2), that was also true in the original basic objects. It is
known that if the weights of the interior edges are all zero, then:
(a) In the construction of cycles, we will omit some of the contour edges, and all of the window



24 I. GORAY

edges.
(b) We substitute these edges with some interior edges.
(c) The sum of the weights of contour edges and windows that are omitted is equal to the sum

of the weights of the interior edges they are substituted with.
Since the sum of the weights of interior edges that we use for the substitution equals zero (because
all interior edges have zero weight), then the length of any possible Hamiltonian cycle is equal
to the length of the contour (H1 = L1 + S1, H2 = L2 + S2).
The remainder of the proof will show, by means of equivalent transformations, that two union
objects will take a form that will allow us to determine the length of any Hamiltonian cycle in
these forms. This will be done by ensuring that the interior edges in both union objects have
zero weight.
We perform equivalent transformations in two union objects. Because the sum of weights of the
interior edges in both union objects are equal to each other, then the composition of the set of
interior edges in these objects is the following:
(1) Without loss of generality, assume that the weight of the interior is nonnegative. In the first

union object, there are µ1 edges with negative weight, and at least µ1 edges with positive
weight. After equivalent transformations of type 1, we denote the number of remaining
interior edges of positive weight as m ≥ 0.

(2) Using analogous arguments to in (1), and the fact that the interior edges in both union
objects have equal weight, then after equivalent transformations of type 1, the number of
remaining interior edges of positive weight is m in the second union object as well.

We can alter the weight of these m edges in both union objects using equivalent transformations
of the second type, to reduce their weight to zero. These equivalent transformations will change
the weight of the contour in both union objects by −2m, and therefore the weights of the contours
will remain equal to each other. Thus, is in the basic objects L1 = L2 and S1 = S2, then the
equivalent transformations to the form where H1 = L1 + S1 and H2 = L2 + S2, and therefore
H1 = H2, which confirms the existence of a Hamiltonian cycle.

(4) On non-Hamiltonian graphs.
Suppose that in two union objects, L1 6= L2 and S1 6= S2. Without loss of generality, assume
that the sum of weights of the interior edges in the first union object is nonnegative. Then,
after we perform equivalent transformations of type 1, there will remain m ≥ 0 interior edges of
positive weight in the first union object. Then, in the second union object, there will remain k
interior edges with nonzero weight, and the sum of weights of the interior edges in each union
object after these equivalent transformations of type 1 is different.
At this stage, it is not possible to reduce the weights of all interior edges in both union objects
to zero by means of equivalent transformations of type 2. Since the existence of a Hamiltonian
cycle implies that the length of any Hamiltonian cycle should be equal in both union objects,
this proves that graph is non-Hamiltonian. This concludes the proof.

Finally, we check the Hamiltonicity for the graphs displayed in Figures 3.1, 3.5, 3.8 and 3.11.

In Figure 3.1, the two basic objects with the completed algorithm of assignment of weights are displayed
(see Example 4). It was suggested that node 6 in the first basic object (see Figure 3.1) could be assigned
weight -0.5 (or +0.5). The nodes 1 and 5 are assigned weights +0.5 (or -0.5). Since we are trying to
solve HCP, which is determined by equating H1 and H2, the choice of weights +0.5 or -0.5 is entirely
determined by the condition H1 = H2. If node 6 is assigned the weight +0.5 in the first basic object, it
implies that H1 = −5 (L1 = −7, S1 = 2), and for the second basic object H2 = −5 (L2 = −7, S2 = 2).
Since H1 = H2, the graph, according to the main theorem, is Hamiltonian.

In Figure 3.5, the two basic objects with the completed algorithm of assignment of weights are displayed
(see Example 5). As a result of this algorithm, all edges and windows of the objects are assigned weights
-1, 0 or +1. We determine the sum of weights of the contours of each object, which is supposed to be
the length of a Hamiltonian cycle. We obtain H1 = −2 (L1 = −3, S1 = 1), and H2 = −4 (L2 = −6,
S2 = 2). Because H1 6= H2, (L1 6= L2, S1 6= S2), then the graph, according to the main theorem, is
non-Hamiltonian.

In Figure 3.8, the two basic objects with the completed procedure of assignment of weights are displayed
(see Example 6). As a result of this procedure, all edges and windows of the objects are assigned weights



ON POLYNOMIAL SOLVABILITY... 25

-1, 0 or +1. We determine the sum of weights of the contours of each object, which is supposed to be
the length of a Hamiltonian cycle. We obtain H1 = −1 (L1 = −2, S1 = 1), and H2 = −3 (L2 = −5,
S2 = 2). Because H1 6= H2 (L1 6= L2, S1 6= S2), then the graph, according to the main theorem, is
non-Hamiltonian.

In Figure 3.11, the two basic objects with the completed procedure of assignment of weights, after the
correction procedure is also applied, are displayed (see Example 7). As a result of these algoritms, all
edges and windows of the objects are assigned weights -1, 0 or +1. We determine the sum of weights
of the contours of each object, which is supposed to be the length of a Hamiltonian cycle. We obtain
H1 = −2 (L1 = −3, S1 = 1), and H2 = −2 (L2 = −3, S2 = 1). Because H1 = H2 (L1 = L2, S1 = S2),
then the graph, according to the main theorem, is Hamiltonian.

5. The general solution of the HCP with complexity estimate. The solution of the HCP
consists of several consecutive subproblems:

(1) Construction of a basic object:
(a) Construction of an object whose windows are not linked by interior edges.
(b) Introduction of additional windows.

(2) Construction of the second object:
(a) Preliminary formation of the second object.
(b) Construction of an object whose windows are not linked by interior edges.
(c) Introduction of additional windows.

(3) Selection of common edges of the contours of both objects, including assignment of weights to
the nodes of both objects (and therefore to the edges of both object).

(4) Determination of parameters of both objects, and comparison of these parameters to determine
the existence of a Hamiltonian cycle in the graph.

We will now estimate the complexity of each of the above subproblems that are equivalent to the HCP.

(1) Construction of a basic object:
(a) Construction of an object whose windows are not linked by interior edges - this subproblem

consists of separate individual algorithms that eliminate links between windows. The order
in which these individual algorithms are performed is determined by the configuration of
the windows and the presence of degenerate segments containing nodes whose degree d = 3.
Each of these procedures moves an interior edge linking window nodes to the contour, and
moves one of the contour edges to the interior. The initial number of windows (some of
which may violate the required properties) is less than or equal to N . Each procedure can
be performed by a single search of all nodes, and no corrections (or doubling back) are
required. This proves that the complexity of this subproblem is polynomial, because the
number of algorithms can not be more than N .

(b) Introduction of additional windows – this subproblem consists of separate individual
algorithms that introduce additional windows. The order in which these individual
algorithms are performed is determined by the configuration of windows, and by the presence
of free edges. Each of these algorithms moves two of the contour edges to the interior, and
one free edge to the contour, creating an additional window. The initial number of windows
after the previous step is less than or equal to [N/6]. During this algorithm, two contour
edges are substituted with one free edge, and with an additional window. This substitution
can be performed by a single search of all free edges of the object, and no corrections
(or doubling back) is required. This proves that the complexity of this subproblem is
polynomial, because the number of algorithms can not be more [N/6].

(2) Construction of the second object:
(a) Preliminary formation of the second object – this subproblem consists of separate individual

algorithms that construct the initial formation of the second object. These algorithms are
the construction of the initial contour, the determination of nodes that should not form
windows, and temporary elimination of these nodes. The order in which these individual
algorithms are performed is determined by the configuration of the first basic object, i.e.,
the number its windows, the position of the windows on the contour, the presence of nodes
of the degree d = 2, presence of degenerate segments, and the presence of free edges. Once
these algorithms have been completed, the final algorithm is the temporary elimination of
interior edges that cannot belong to the contour of the second object, and for which no



26 I. GORAY

further algorithms apply.
i. Construction of the initial contour – this algorithm consists of a sequence of rear-

rangements of the first basic object by moving the interior edges to the contour, and
rearranging some nodes of degree d = 2. The number of such nodes is less than N .

ii. Determination and elimination of nodes that should not form windows – this algorithm
identifies nodes that are incident to edges that are linked to window nodes of degree
d = 2. The algorithm of eliminating these nodes also involves the elimination of links
between windows. The number of nodes that can not form windows of the second object
is determined by the number of nodes of degree d = 2, which is less than N .

iii. Elimination of interior edges that cannot belong to the contour – this algorithm identifies
interior edges and temporarily deletes them from the object. The number of interior
edges that are deleted is dependent on the number of windows in the first basic object,
and the number of nodes with degree d = 2 in the second object.

Hence, since each of the individual algorithms that construct the preliminary form of the
second object is performed less than N times, each performed by a single search on the
nodes of the contour, and no corrections (or doubling back) are required, the complexity of
this subproblem is polynomial.
Elimination of interior edges that cannot belong to the contour prohibits the movement of
certain contour edges to the interior. The subproblems 2(b) and 2(c) can be performed as
described as in 1(a) and 1(b).

(3) Selection of common edges and assignment of weights to the edges of the object. This subproblem
consists of individual algorithms that:
(a) Identify contour edges that are common for both basic objects.
(b) Assigns equal weights, in both basic objects, to nodes incident to common edges.
(c) Assigns zero weights to all interior edges in either basic object. If this is impossible, apply

the correction algorithm to ensure that the sum of weights of the interior edges is zero.
The algorithm of identifying common contour edges consists of comparing contour edges of
both objects, and is performed by a single search of the contour edges of both objects.
The weights of the nodes that are incident to the common edges should be the same. This is
achieved through the assigning of weights to the subgraph that is common to both objects.
This will ensure that the weight of every common contour edge will be the same in both
objects. The assignment of weights to the edges that link nodes incident to common contour
edges is achieved by means of islands that are identified in the subgraph. In those cases
when the weight of an interior edge is nonzero, then we apply the correction algorithm
that makes the sum of the weight of interior edges equal to zero. As a result of the weight
assignment, the sum of weights of the interior edges is zero. This is achieved by assigning
the weights +0.5 (or -0.5) to a node a, and if there is an interior edge e(a − b), then the
weight -0.5 (or +0.5) should be assigned to node b.
Therefore, since all algorithms of this subproblem are performed no more than N times, the
complexity of this subproblem is polynomial.

(4) Determination of parameters of both objects – the parameters that determine the Hamiltonicity
of the graph are sums of weights of edges, and the sums of weights of windows of both basic
objects. If for both basic objects, these parameters are equal, the graph is Hamiltonian. These
parameters are determined by adding the weights of less than N contour edges, and the weights
of no more than [N/6] windows, in each basic object. Therefore, the complexity of computing
these parameters is polynomial.

Therefore, the complexity of performing all of the above subproblems is polynomial.

6. Conclusion. The described solution of the HCP based on the construction of two basic objects
for a given graph can be considered as surprising. The HCP for graphs of degree d ≤ 3 is NP-complete,
but it is just a particular case of HCP for general non-oriented graphs. However, its solution provides
a hope for the solution of the general P = NP . The question of construction of basic objects for other
NP-complete problems remains open, and further hard work is required to prove the existence of such
objects.

It is worth mentioning that these results on the existence of Hamiltonian cycles identify an algorithm to
construct the cycle, if it exists. A separate article will be devoted to the construction of this algorithm.



ON POLYNOMIAL SOLVABILITY... 27

Acknowledgments. The author is grateful to V. Ejov (School of Mathematics and Statistics,
UniSA), and M. Haythorpe (School of Mathematics and Statistics, UniSA) for useful discussions and
questions.

REFERENCES

[1] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H.
Freeman & Co., New York, 1979).

[2] I. I. Goray and L. I. Goray, Computer system configured in supporter of solving NP-complete problems at high speed
(United States Patent No. 5, 535,840 B1, International Intellectual Group, Inc., 2003).

[3] G. Gutin and A. P. Punnen (eds), The Traveling Salesman Problem and Its Variations (Kluwer Academic Publishers,
Boston, 2002).

[4] D. S. Hochbaum (ed), Approximation algorithms for NP-hard problems (PWS Publ. Co., Boston, 1997).
[5] S. Arora and M. Sudan, ”Improved Low-Degree Testing and its Applications”, ACM STOC (1997)

http://www.cs.princeton.edu/∼arora/pubs/ldtest.ps.
[6] E. Balas and N. Christofides, ”A restricted lagrangean approach to the traveling salesman problem”, Math. Progr. .

21 (1) (1981) 19–46.
[7] M. Held and R. M. Karp, ”Traveling Salesman Problem and Minimum Spanning Trees: Part II”, Math. Progr., 1 (1971)

6–25.
[8] E. L. Lawler, D. E. Wood, ”Branch-and-Bound Methods: A Survey”, OR 14 (1966) 699–719.
[9] Website at: http://www.pcgrate.com/download.

http://www.cs.princeton.edu/~arora/pubs/ldtest.ps
http://www.pcgrate.com/download

