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ABSTRACT 
 

The present work deals with a comprehensive numerical analysis of x-ray grazing-incidence scattering from single- and 
double-boundary, finite-conducting rough surfaces with asperities of different statistics, performed with the use of a 
mid-end workstation in a reasonable computation time. Multiple and multi-wave diffraction, refraction, absorption, and 
resonances influence significantly x-ray and neutron scattering. These are pure dynamic effects, which require 
application of a rigorous theory to correctly describe the power change in the specular order and to describe non-
specular distribution. Despite the impressive progress attained in developing a rigorous theory with account for random 
roughness, the author is aware only of approximate and asymptotic approaches in the case of neutron and x-ray 
scattering even by 1D surfaces, such as the Born approximation, the distorted-wave Born approximation, parabolic 
equation methods, etc. The PCGrate®-SX v.6.3 software developed on the basis of a modified boundary integral 
equation method and the Separating solver allows one to operate with exact models, e.g., those involving Maxwell's 
equations and rigorous boundary conditions, and appropriate radiation conditions. In order to compute the scattering 
properties of a rough surface using the forward electromagnetic solver, Monte Carlo simulation is employed to average 
the deterministic scattered power due to individual surfaces over an ensemble of realizations. The difference between 
approximate and rigorous approaches can be clearly seen in cases where grazing incidence occurs at close to or larger 
than the critical angle. This difference may give rise to wrong estimates of rms roughness and correlation length if they 
are determined by comparing experimental data with calculations. Besides, the rigorous approach permits taking into 
account any known roughness statistics, including quasi-periodicity of quantum dot ensembles. 

Keywords: x-ray and neutron scattering, grazing-incidence x-ray reflectometry, random roughness, quantum dots, 
boundary integral equations, specular and diffuse reflectance, numerical scattering analysis 

 
 

1. INTRODUCTION 
 

Multi-wave and multiple diffraction, refraction and absorption, resonances and wave deformation govern to a considerable 
extent scattering from nanoroughness of continuous media and thin films in the x-ray and extreme ultraviolet (EUV) ranges. 
Account of these pure dynamic effects, which requires application of rigorous electromagnetic theory, permits one to calculate 
the intensity of the specular component and describe adequately the intensity distribution of the diffuse component which may 
have resonance peaks. Despite the impressive progress reached recently in development of exact numerical methods of 
investigation of wave diffraction from boundary roughness1-3, the present author is aware only of asymptotic and approximate 
approaches to the analysis of x-ray and neutron scattering, such as the Born approximation (BA), distorted-wave Born 
approximation (DWBA), method of parabolic wave equation (PWE), and a few others4, 5. 
 
The rigorous modified method of boundary integral equations6-9 (MIM), employed widely in analyzing the efficiency of 
bulk and multilayered diffraction gratings, including those with real border profiles, has been recently extended to cover 
non-periodic and quasi-periodic structures with border roughness of any type10. The method is very accurate and fairly 
fast convergent in the range of large ratios of period d and boundary depth h to wavelength λ11, an impressive 
achievement for any numerical approach12-18, particularly for structures with randomized borders. The program PCGrate-  
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SX® v.6.319, which has been developed in the frame of rigorous theory (i.e., with the use of Maxwell’s equations, 
rigorous boundary and radiation conditions), permits application of optical methods to analysis of specular and non-
specular x-ray scattering from multilayer rough mirrors in real space. For rigorous account of roughness, PCGrate-SX® 
v.6.3 makes use of a model, in which a randomized surface is identified with a grating with a large d containing a large 
number of random asperities. Thus, the program analyzes complex structures ,which may be considered as gratings from 
the pure mathematical standpoint while representing in actual fact a rough surface if d is chosen much larger than the 
correlation length (width) ζ of the asperities. Furthermore, in cases where ζ is comparable with λ, and the number of 
orders is large, the continuous angular distribution of diffuse power reflected from a randomized boundary can be 
described by a discrete angular distribution of grating efficiency. 
 
To study the scattering intensity with the use of a forward electromagnetic code and Monte Carlo simulation, one should 
first of all generate statistical realizations of the boundary profiles of the structure under investigation, then calculate the 
scattering intensity for each realization and, finally, average the intensities over all the realizations. The present author 
used a spectral method20 to generate plane surfaces with a Gaussian height distribution and a Gaussian correlation 
function. To allow randomization of grating boundaries, this method was extended to cover the case of non-flat 
interfaces prescribed by arbitrary polygons19. In particular, non-plane boundaries are characteristic of self-assembled 
low-dimensional quantum structures defined by other asperity statistics21. The present paper addresses rigorous 
simulation of grazing-incidence x-ray reflectometry (GIXRR) as applied to continuous and single-layer, finite-
conducting 1D surfaces with random and quasi-regular roughness in the case of ray incidence in the plane perpendicular 
to the relief (classical 2D diffraction). Data obtained by approximate methods and the rigorous approach are found to be 
noticeably different, however, in the cases of near-normal incidence, arbitrary incident beam orientation, perfect 
conductivity of the lower boundary, multilayer mirrors and randomized diffraction gratings as well, a problem to be 
considered elsewhere. 
 
 

2. APPROXIMATION METHODS 
 

Scattering from rough surfaces modifies significantly the power distribution between the reflected and transmitted 
specular fields and generates additional losses due to absorption within the media. The existing theoretical frameworks 
exploit the fact that interaction between x-rays and matter is typically weak (“small roughness approximation”) or, 
alternatively, the surface is very rough whose typical length scales are much greater than the wavelength. In the first 
case, one treats the specular and non-specular scattering from interfacial roughness using first- or, at most, second-order 
perturbation theory. Hence the theory is limited to the case where the non-specular scattered power is small compared to 
the incident power. In the second case of the geometrical optics approximation (scalar theory), one launches a large 
number of parallel incident rays on the surface, hence the polarization and resonance effects in this model are non-
accountable. For the strictly grazing scattering the PWE method can be explored for such directed waves and arbitrary 
roughnesses.  
 
Within the context of the geometrical optics theory (or the high-frequency Kirchhoff integral approximation), each ray 
undergoes a series of reflections off the surface until it finally escapes5. A fundamental constraint on the application of 
this approach to bulk and multilayer x-ray structures, as well as to those with one dielectric coating, is imposed by the 
large slopes and oblique angle of incidence, which should not be very close to grazing8. The critical value of the angle 
depends, however, on the actual surface parameters and the light wavelength and polarization. The limitation on the 
angle of incidence is connected with the difference in scattering between the finitely and perfectly conducting bulk 
rough mirrors operating in the x-ray range under grazing incidence, particularly in the case of the TM polarization. 
 
Turning now to perturbation theory, two different formulations are basically used for x-rays and neutrons, each valid in 
its specific regime. The BA is based on iterative solution of an integral equation and was first applied to homogeneous 
rough surfaces in the context of x-ray and neutron scattering4. The BA refers to a family of methods in which the 
unknown field satisfies a volume integral equation of the second kind, with a ‘potential’ term and the Green’s function 
in the integrand. The solution can then formally be expressed as an iteration series (the so-called Born or Neumann 
series) with the potential used as a small parameter8,22. The Born approximation usually corresponds to the first iteration. 
The small parameter of this expansion is typically the electric permittivity contrast, which is very small for x-rays and 
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neutrons. The main weakness of the BA is that it does not take properly into account refraction by the surface and, 
therefore, fails as one approaches the so-called critical angle, at which total external reflection occurs. The BA can be 
improved considerably in this respect by choosing a more appropriate reference problem, namely, a flat surface between 
two media. In this case, the free-space Green function is replaced by a half-space Green function, that depends explicitly 
on the Fresnel reflection coefficient at the plane interface. This is the so-called DWBA, a method which draws 
inspiration from methods, as the BA, of quantum mechanics and was developed in the eighties of the last century for x-
ray scattering from rough surfaces4. The expression derived from the second-order DWBA connects smoothly the 
expressions derived from the BA and first-order DWBA approximations23. 
 
If the fields near a rough surface travel predominantly in one direction, a parabolic approximation to Maxwell’s equation 
about the direction of propagation can be employed as a basis for a numerical method1. The PWE approximation 
neglects large-angle and multiple scattered waves that turn back on themselves, and reduces computational cost by 
employing a marching method in the direction of wave propagation. 
  
The Debye-Waller (DW) asymptotic, which can be derived from the BA, is commonly used in this region where grazing 
angle of incidence on the plane must be large and far from the critical angle10,24. The Nevot-Croce (NC) model, which 
can be derived from the first-order DWBA, is used mostly at grazing incidence near or below the critical angle. Both 
descriptions of the reduction of specular reflectance are valid, strictly speaking, in the case of small roughness heights 
(rms roughness σ) and very big (DW) or very small (NC) correlation lengths. It was shown25 and corroborated by our 
calculations26 that the correlation function, which determines the properties of scattering from shallow nanorough 
surfaces, becomes no longer adequate for description of the speckle pattern after the mean height of irregularities h has 
exceeded one-tenth of the wavelength. The use of the above or even more sophisticated approximations in the 
intermediate incident angle range, for high conducting surfaces, and especially in the TM polarization also appears very 
questionable. 
 
 

3. SEPARATING SOLVER 
 

The PCGrate 6.3 Separating solver of the MIM is based on the single-boundary integral-equation Scattering solver19 and 
the Scattering-matrix approach to multilayer diffraction 14,27,28. By definition, it requires that a homogeneous medium 
separate two adjacent corrugated regions by fictitious planes10. The distance between such planes may be arbitrary, 
including very nearly zero separation. The Separating solver is primarily intended for intensity calculations for any 
uncoated, including rough, grating and mirror, specific types of coated gratings, and photonic crystals. It is indispensable 
for x-ray and EUV gratings and mirrors covered with one or many plane or rather thick conformal coatings and, 
especially, for grazing incidence structures. In this Section the Separating solver is described for the general case of 
conical diffraction and arbitrary polarization.  
 
3.1 Field representations in a homogeneous plane layer between corrugated regions 
 
Consider scattering by a grating structure of elliptically-polarized light with the wave vector k, vectors of the electrical 
field Є and magnetic field Ħ, and the phase difference angle ψ = ψ2 – ψ1 between the polarization components TM (S) 
and TE (P). Due to geometric invariance of the physical problem with respect to the z coordinate and time t, we come to 

 
  Є(x, y, z, t) = Е(x, y)exp{i(kzz – iωt)} = Е0(x, y)exp(–iψ1)exp{i(kzz – iωt)};  (1a) 
  Ħ(x, y, z, t) = H(x, y)exp{i(kzz – iωt)} = H0(x, y)exp(–iψ2)exp{i(kzz – iωt)},  (1b) 

 
where the z-component kz,l = γl of the wave vector in layer l can be described by the relations 

 
 km,l = αm,lx – βm,ly + γlz; αm,l = 2π(√μl√εlsin(θl)cos(φl)/λ + m/d); 
   γl  = 2π√μl√εlsin(φl)/λ;  
  βm,l = [(2π√μl√εl/λ)2 – (α2

m,l + γ2
l)]0.5 or  

  βm,l = i[α2
m,l + γ2

l – (2π√μl√εl/λ)2]0.5,      (2) 
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where λ is the wavelength in vacuum. Because of the operator £ transforming the incident into total (and diffraction) 
field being linear, the z-dependence of the incident and diffracted field is the same and, in the particular case of the 
conical problem, can be dropped. Denote the m-th order wave vector in the layer l with the cut-off z-component by κm,l: 
 

     κ2
m,l = |km,l|2 – γ2

l.      (3) 
 

Substituting (1) into Maxwell’s equations and recalling the boundary conditions, we come to the Helmholtz equations 
for the z-components Еz and Hz in each homogeneous layer l for piecewise constant values of κ0,l 
 

 Еz – κ2
0,l Еz = 0;     (4a) 

 Hz – κ2
0,l Hz = 0.     (4b) 

 
The explicit form of boundary conditions of the transmission type, together with the analytic properties of integral 
operators, as well as other notations can be found in29. Thus, to solve the conical diffraction problem, one needs to find 
only the z-components of the electric and magnetic field. Knowing them, one can readily derive the other field 
components. 
 
3.2 Derivation of the complex field amplitudes in the layers using Rayleigh expansions 
 
For the fields in the upper and lower half-infinite media, as well as for homogeneous layers that can be separated 
between two adjacent boundaries Γl–1 and Γl by planes, the Rayleigh expansion is valid. For the fields in the coordinate 
system attached to the lower boundary Γl we have 
 
     Еz,l(x, y) =  m=–∞∑∞CP

m,l exp{i(αm,lx – βm,lyl)} + m=–∞∑∞DP
m,l exp{i(αm,lx + βm,lyl)};   (5a) 

     Hz,l(x, y) =  m=–∞∑∞CS
m,l exp{i(αm,lx – βm,lyl)} + m=–∞∑∞DS

m,l exp{i(αm,lx + βm,lyl)}.   (5b) 
 
For those in the coordinate system attached to the upper boundary Γl–1 (l = 1 denotes the superstrate boundary, and l = L 
denotes the substrate boundary) we have 
 
     Еz,l(x, y) =m=–∞∑∞AP

m,l–1 exp{i(αm,lx – βm,lyl–1)} + m=–∞∑∞BP
m,l–1 exp{i(αm,lx + βm,lyl–1)};   (6a) 

     Hz,l(x, y) =m=–∞∑∞AS
m,l–1 exp{i(αm,lx – βm,lyl–1)} + m=–∞∑∞BS

m,l–1 exp{i(αm,lx + βm,lyl–1)}.  (6b) 
 
We shall subsequently write the same expressions for the coefficients of the electrical and magnetic field component 
harmonics, bearing in mind they are actually two different sets of coefficients with indices P(TE) and S(TM). The 
Rayleigh coefficients Am,l, Bm,l, Cm,l–1, Dm,l–1 are coupled through the relations 
 
     Cm,l–1= Am,lexp{i(–βm,lеl)};      (7a) 

 Dm,l–1 = Bm,lexp{i(+βm,lеl)},      (7b) 
 

where еl denotes vertical shift between the boundaries Γl–1 and Γl: 
 

 еl = yl–1 – yl.        (8) 
 

3.3 Matrix relations for reflection and transmission amplitude factors 
 
We denote 
 

 Cl–1= Ul Al;      (9a) 
 Dl–1 = U’lBl,      (9b) 
 

where Al, Bl, Cl–1, Dl–1 and  Ul and U’l are the corresponding column and diagonal matrices, respectively. Each boundary 
is characterized by two reflection and two transmission matrices, which are related through 
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      Bl = t’l Dl + rl Al ;                  (10a) 
      Cl = r’l Dl  + tl Al .                 (10b) 

 
Consider a stack of L – l lower interfaces. For the lowest l = L layer DL = 0, because our physical problem does not 
include waves coming from the substrate. Then, for the upper layer l  
 

 Bl = Rl Al ;                 (11а) 
 CL = Tl Al.                 (11b) 
 

To solve the problem, we have to find the reflection and transmission matrices R1 and T1 from known matrices RL and TL: 
 

 RL = rL,                  (12a) 
 TL = tL.                  (12b) 
 

We can derive the relations coupling Rl-1 and Tl-1 with Rl and Tl by invoking (9) and (10) in conjunction with (11) and 
(12): 
 

 Rl–1 = rl–1 + (t’l–1U’l Rl)(Ul – r’l–1U’l Rl)–1tl–1;                 (13a) 
 Tl–1 = Tl(Ul – r’l–1U’l Rl)–1tl–1.                (13b) 
 

Expressions (13a) and (13b) allow us to find R1 and T1  by a recursive procedure beginning with the lower medium 
labeled by L14,27,28. To do this, we have to know, in a general case, eight matrices of scattering amplitudes (two full 
scattering amplitude matrices for the S and P polarization components) and perform two matrix inversions in each 
iteration step. 
 
3.4 Efficiencies and polarization angles 
 
For the incident wave amplitude we use unit normalization of the type 
 
      (β0,0/κ2

0,0 )(ε0|Еz,inc|2 + μ0|Hz,inc|2) = 1.     (14) 
 
Then for the diffraction efficiencies we can write 
 

 ξm,0 =  (βm,0/κ2
0,0)(ε0|B1

P|2 + μ0|B1
S|2);                 (15a) 

 ξm,L =  (βm,L/κ2
0,L)(εL|CL

P|2 + μ0|CL
S|2).               (15b) 

 
The generalized energy balance leads us to 
 

 m∑ ξm,0 + m’∑ξm’,L + l=1∑l=L–1ςl = 1,      (16) 
 

where ςl is the absorption in layer l that can be treated separately30. 
 
By definition, the polarization angles of the incident31 and m-th diffracted waves in the l layer can be found from the s 
(P) and p (S) components of the electric field EP

m,l and ES
m,l, respectively: 

 
 δm,l = arctg(|EP

m,l| / |ES
m,l|);                  (17a) 

 ψm,l = –arg(EP
m,l / ES

m,l),                 (17b) 
 

where 0 ≤ δm,l ≤ π/2, π < ψm,l ≤ π,  
 
     EP

m,l = (Еm,l, sm,l);                   (18a) 
     ES

m,l = (Еm,l, pm,l),                 (18b) 
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and one can associate two unit vectors sm,l and pm,l, such that 
 
     sm,l = km,l × (0, 1, 0) / |km,l × (0, 1, 0)|;                (19a) 
      pm,l = sm,l × km,l / |km,l|.                (19b) 
 
It can also be shown that 
 

  EP
m,0/ES

m,0 = [μ0/ε0]0.5(αm,0ε0k0B1
P + βm,0γ0B1

S)/(αm,0μ0k0B1
S – βm,0γ0B1

P);               (20a) 
  EP

m,L/ES
m,L = [μL/εL]0.5(αm,LεLk0CL

P + βm,LγLCL
S)/(αm,LμLk0CL

S – βm,LγLCL
P).             (20b) 

 
where k0 = (2π/λ). 
 
In the case of pure polarization and in-plane diffraction, the number of scattering matrices for all boundaries reduces by 
a factor two. 
 
 

4. EXAMPLES OF CALCULATIONS 
 

In this Section, we are going to address the results of numerical study of specular grazing-incidence reflection of hard 
and soft x-rays from gold mirrors with different roughness parameters, as well as illustrate the calculation of specular and 
diffuse grazing-incidence hard x-ray reflectivities from quasi-regular Ge(Si)/Si QDs. Readers interested in investigation 
of specular and diffuse x-ray scattering from multiple ensembles of In(Ga)As/GaAs QDs performed in the frame of the 
MIM are referred to21. 
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Fig. 1. TE reflectance models of Au mirrors (λ = 0.154 nm) plotted vs. angle of incidence for different σ and ζ. (a) σ = 0 and ζ = ∞ 
(solid line – perfect surface); σ = 1.5 nm and ζ = 5 nm (long-dashed line – rigorous average model for 15 random borders); σ =1.5 nm 
and ζ = 0 (long-short-dashed line – NC model); σ = 1.5 nm and ζ = ∞ (short-dashed line – DW model).  
(b) σ = 0 and ζ = ∞ (solid line – perfect surface); σ = 0.15 nm and ζ = 5 nm (crosses – rigorous average model for 15 random borders); 
σ = 0.15 nm and ζ = 0 (squares – NC model); σ = 0.15 nm and ζ = ∞ (triangles – DW model).  
 
4.1 Specular reflectivity of Au mirrors 
 
A bulk model of a typical gold x-ray mirror for use at grazing incidence near the angle of total external reflection was 
chosen as a sample. The difference between the asymptotic and rigorous approaches can be clearly seen in the figures 
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which plot the calculated specular TE reflectances (TM reflectance data are close in magnitude) of Au surfaces vs. the 
angle of incidence for different values of σ, ζ, and λ. For the DW model, ζ = ∞, for the NC model, ζ = 0, and for the 
rigorous model, chosen ζ are close to the asymptotic values or have intermediate values. The refractive indices of Au 
were taken from32. 
 
A comparison between the approximate and rigorous models for Cu Kα1 radiation (λ = 0.154 nm), ζ = 5 and different σ 
is shown in Fig. 1. For σ = 1.5 nm in Fig. 1 (a), the difference is about an order of magnitude in the low reflectance 
range, and about a few times in the intermediate range. Close to the critical angle, this excess amounts to ~10% 
compared with the figure derived from the NC asymptotics. Such pronounced differences may bring about an 
overestimation of σ if it is deduced from a comparison of experimental data with calculations24. For σ = 0.15 nm (Fig. 
1(b)), the results obtained for all the models differ only by a few % within the angular range studied. Significantly, only 
10-15 random asperities within d and about as many statistical realizations turned out to be sufficient for the average 
values of the reflectance in the examples of Fig. 1 to converge. The number of collocation points at the border required 
to reach convergence and the desired accuracy (~1.E–5) as estimated from the energy balance was found to be 200011. 
Note that in the deep roughness case, the convergence speed-up techniques were used. The time taken up by one 
rigorous computation on a workstation with two Quad-Core Intel® Xeon® 2.66 GHz processors, 8 MB L2 Cache, 1333 
MHz Bus Clock and 16 GB RAM, is ~16 min when operating on Windows Vista® Ultimate 64-bit and employing 
eightfold paralleling. 
 
A typical border profile used for modeling of such rough mirrors, which have a period of 50 nm, σ = 1.5 nm, and ~10 
asperities per period is demonstrated in Fig. 2 (a). To reach the required average statistical depth with due allowance for the 
fine structure of the roughness in the above example, one has to use at least 10 sample points per asperity. The heights of 
randomized borders range from 3 nm to 15 nm. Thus, the h/λ ratio may reach 100, a figure very large for any numerical 
method. 
 

 
Fig. 2. A border profile sample used in rigorous models of Au x-ray mirrors: (a) d = 50 nm, σ = 1.5 nm ζ = 5 nm; (b) d = 1500 μm, σ = 
1.5 nm ζ = 10 μm, and scales differ by a factor 104. 
 
Figure 3 compares the approximate and rigorous models for λ = 0.154 nm, σ = 1.5 nm and different ζ. The reflection 
coefficients calculated rigorously in the low-intensity domain (Fig. 3 (a)) for ζ = 10 µm are approximately twice those 
obtained with the DW asymptotics. For ζ = 0.1 µm, the excess is already about fourfold. By contrast, close to the critical 
angle (Fig. 3 (b)) the rigorous data obtained for ζ = 0.1 µm lie ~20% below the values calculated for this region with the 
NC factor. For ζ = 10 µm, in the region of high intensities, the differences are still larger, to reach finally a few hundred %. 
Such pronounced differences may give rise not only to overestimation of σ, but to a wrong assessment of ζ as well, if they are 
deduced from a comparison of experimental with calculated data10. The behavior of the scattering intensity on ζ which is 
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illustrated graphically in Fig. 3 matches qualitatively with the results obtained in the frame of the second-order DWBA, while 
differing clearly in quantitative estimates, particularly for values of ζ for which second-order DWBA does not work23.  
 
A typical border profile used for modeling of such rough mirrors, which have d = 1500 μm, σ = 1.5 nm, and ζ = 10 μm, 
is demonstrated in Fig. 2 (b) (vertical scales differ by a factor 104). To account for the fine structure of irregularities in the 
above example, one has to use ~100 asperities per d, several sample points per asperity, average over 9-25 random boundaries 
and assume 400-3200 collocation points. For ζ = 10 µm and d = 1500 µm, λ / d ≈ 1.E–7, a value too small to be dealt with in 
any known rigorous numerical approach. For the Separating solver of the MIM, however, this formidable scattering 
problem is found to be convergent and yields quite accurate results (Energy balance error ~1.E–6) for only 400 
collocation points used and no speed-up techniques invoked11. The time taken up by one computation on the above  
mentioned workstation is ~40 sec. 
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Fig. 3. Specular TE reflectance of Au surfaces calculated for rms roughness σ = 1.5 nm and different correlation lengths ζ for λ = 
0.154 nm and plotted vs. angle of incidence on (a) logarithmic and (b) linear scales. 
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Fig. 4. Specular TE reflectance of Au surfaces calculated for rms roughness σ = 1.5 nm and different correlation lengths ζ for λ = 1.5 
nm and plotted vs. angle of incidence on (a) logarithmic and (b) linear scales. 
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Figure 4 plots graphs similar to those presented earlier but obtained for λ = 1.5 nm, σ = 1.5 nм and different ζ. For the 
minimum ζ = 1.5 nm, the rigorous results exceed by a few times those derived from the DW asymptotics for large grazing 
angles, and are ~10% larger than the ones extracted from the NC asymptotics close to the critical angle. For ζ = 15 nm, the 
differences are smaller, and as the correlation length continues to grow, rigorous calculations yield results which approach 
throughout the angular range covered the values derived from the DW asymptotics, in full agreement with23. In the examples 
with λ = 1.5 nm, one has to take into account ~50 asperities per d, average over 9-25 random borders and use 200-2400 
collocation points. None of the known convergence speed-up techniques was applied in these cases. 
 
4.2 Specular and diffuse reflectivity of Ge/Si quantum dots 
 
A recent GIXRR study has analyzed x-ray scattering from samples with multiple QD ensembles grown in the 
In(Ga)As/GaAs system21. In the model, QDs are ordered on the average and have the randomized pyramid (triangle in 
the cross section) shape10. The position of the experimentally observed diffuse-scattering intensity peaks was found to be 
totally determined by the slope angle α of the QD faces (the so-called diffraction grating blaze condition)21, which had 
been theoretically predicted earlier10. A comparison with the results of numerical modeling of scattering based on the 
MIM suggests that a straightforward geometric condition 2α = θinc ± θdiff permits one to accurately derive α from the 
position of the intensity peak whose shape depends on many parameters. In this Section, we are going to illustrate 
calculation of the coefficients of specular and diffuse x-ray reflection from quasi-regular Ge QDs grown on a Si 
substrate. The refractive indices of Ge and Si  were taken from32. 
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Fig. 5. Specular and diffuse reflectivity of Ge/Si QD structures calculated for λ = 0.154-nm and 89.6º incidence and plotted vs. angle 
of scattering for: (a) model of the pyramid asperity type with one preferable face slope angle; (b) model of the dome asperity type 
with several preferable face slope angles. 
 
Typical theoretical curves of specular and diffuse scattering intensities obtained with the use of GIXRR for Ge/Si QD 
structures are shown graphically in Figs. 5 (a) and 5 (b). The position and shape of the main peaks in both graphs 
correlate well with the measurements33; to compare their amplitudes, however, one should reduce the three-dimensional 
scattering problem to the two-dimensional one21. A few sets of generated border parameters are enough to compute exact 
efficiencies of such a model. The error of the calculations estimated from the energy balance was ~1.E–6 for 400-1600 
collocation points at each boundary of the modeled structures. The time taken up by calculations of a scattering intensity 
curve with one statistical set of parameters on the above  mentioned workstation is ~2 min. Note that the convergence 
speed-up techniques were used in this deep irregularity case. 
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5. SUMMARY 

 
The most essential results of the present study can be summed up as follows. 
 
Calculations based on rigorous electromagnetic theory were performed using the MIM, which turned out to provide high 
accuracy and fast convergence for very large ratios of the characteristic period and height to wavelength. The presented 
Separating solver of the MIM gives exact results and works fast in the x-ray range at grazing incidence, the most 
difficult case for any rigorous numerical code.  
 
Diffraction problems with 1D bulk and single-layer structures with arbitrary border profiles, including edges and random 
asperities, are treated with the PCgrate-SX v.6.3 Separating solver. Rigorous accounting of asperities having Gaussian 
and non-Gaussian surface statistics has been applied to diverse problems and parameters: (1) x-ray specular reflectance 
of Au mirrors for different rms roughnesses, correlation lengths, and wavelengths; (2) x-ray diffuse and specular 
reflectances of single-layer QDs. 
 
The accurate results obtained by the rigorous method for the intensity of x-ray scattering by randomly rough mirrors and quasi-
periodical QDs may differ substantially from those derived using known asymptotics and approximate approaches. These 
differences may give rise, for instance, to wrong estimates of rms roughness and correlation length (slope angles) if they are 
determined by comparing experimental data with calculations. Besides, the rigorous approach permits taking into account any 
known roughness statistics. 
 
The proposed approach to numerical treatment of x-ray diffraction from low-dimensional structures like QD ensembles 
permits one to determine accurately the specular and the diffuse reflectance components. Both theoretical and 
experimental studies have revealed that the angular diffuse spectrum of scattering from QDs contains resonances 
corresponding to specular reflection from QD faces. The positions of the resonances should yield the angular slopes of 
QDs derived from a simple geometric relation with a high accuracy were corroborated by exact calculations. Thus, the 
traditional use of XRR in determination of layer parameters and of boundary imperfections has been extended to provide 
a method taking into account the geometry of QDs epitaxially grown in different systems. 
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