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Diffraction from 1D multilayer gratings having arbitrary border profiles
including edges is considered for small wavelength-to-period (�/d ) ratios,
the most difficult case for any rigorous numerical method. The boundary
integral equation theory is so flexible that we can indicate a few areas where
it can be modified. In this work, special attention is paid to the main
aspects of the Modified Boundary Integral Equation Method for �/d� 1 as
well as to a more general treatment of the energy conservation law
applicable to multilayer absorption gratings. Three types of small �/d
problems are known from optical applications: (a) shallow gratings
working in the X-ray and extreme ultraviolet ranges, both at near-
normal and grazing angles, (b) deep echelle gratings with a steep working
facet illuminated along its normal by light of any wavelength, and (c) rough
mirrors and gratings in which rough boundaries can be represented by
a large-d grating, and which contain a number of random asperities
illuminated at any angle and wavelength. Numerical examples of diverse in-
plane diffraction problems are presented.

1. Introduction

This work is part of the research that has been pursued over a long period of time
with the purpose of developing accurate and fast numerical algorithms, including
commercial packages, designed to work in all, including the shortest, wavelength
ranges [1–3]. Diffraction from 1D multilayer gratings with arbitrary border profiles,
including edges and random roughnesses, is considered in the in-plane (classical)
mount. A more general case of the off-plane (conical) mount will be addressed in
future publications. The term ‘1D multilayer’ refers to a general 1D grating or rough
mirror on a planar surface of arbitrary conductivity which is periodic in one
direction, constant in the second, and has a finite number of borders and layers in the
third. The actual number of identical or different borders and layers can be large
enough, up to a few thousand for hard X-ray applications. Though various
approximated analyses [4,5] developed for the treatment of such challenging
diffraction problems enjoy more or less successful application, they are always
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plagued with uncertainties which make comparison between rigorous and non-
rigorous approaches difficult.

The boundary integral equation theory is so flexible that we can indicate a few
areas where it can be modified [6,7]. They are: (1) physical model (choice of
boundary types and conditions); (2) mathematical structure (integral representations
using potentials or integral formulas and a multilayer scheme); (3) method of
discretization (choice of basis and trial functions, discretization scheme and
treatment of corners in boundary profile curves); (4) low-level details (calculations
and optimization of Green’s functions and their derivatives (Green’s series), mesh of
sample (collocation) points, quadrature rules, solution of linear systems, caching of
repeating quantities, etc.). A self-consistent explanation of various integral methods
is well beyond the scope of this study, and one should rather be addressed to the
references at the end of the paper. In this work, special attention is paid to all aspects
of the Modified Boundary Integral Equation Method (MIM) for small wavelength-
to-period ratios (�/d� 1) as well as to a more general treatment of the energy
conservation law applicable to multilayer absorption gratings. Two different solvers
based on the MIM are used in the present work to analyze the diffractive properties
of bulk and multilayer gratings with arbitrary angles of incidence, boundary shapes,
and layer thicknesses, including non-conformal layers and real-profile boundaries.
Numerical examples of diverse problem types are presented.

2. Theory

2.1. Diffraction problem

The multilayer grating is a stack of cylindrical surfaces whose generatrices are
parallel to the z-axis and whose section in the (x, y)-plane is given by simple, non-
intersecting and d-periodic curves �j, j¼ 0, . . . ,N� 1, either C1 or piecewise C2 (see
Figure 1). We assume that the open arc �j denotes one period of �j. The y
projections of the boundaries are to be overlapping or not; it depends on the
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Figure 1. Schematic cross-section of a grating.
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multilayer scheme used (cf. the next subsection). Consider a multilayer structure

consisting of Nþ 1 homogeneous material layers �0, . . . ,�N characterized by their

refractive indices �j so that �2j ¼ "j�j, j ¼ 0, . . . ,N with piecewise constant functions

of electric permittivity and magnetic permeability "(x, y)¼ "j and �(x, y)¼�j,

respectively. One refers to the semi-infinite top �0 and bottom �N layers. It is

assumed that the light incident from �0 in the y0x plane with the vacuum wavelength

� and pulsatance ! has the time dependence e�i!t. Because additionally �j is not

varying in the z direction, it is possible to deal with the two fundamental cases of

polarization separately, i.e. the TE mode (with the z component E inc
z of the electric

field Einc parallel to the grating grooves) and the TM mode (with the z component

H inc
z of the magnetic field Hinc parallel to the grating grooves) [8]. Thus, the original

three-dimensional (3D) diffraction problem reduces to a 2D one and becomes

independent of the z direction of the grating:

uincðx, yÞ ¼ E inc
z ðx, yÞe

ið�x��yÞ (TE ),

uincðx, yÞ ¼ H inc
z ðx, yÞe

ið�x��yÞ (TM), ð1Þ

where �¼ k0 sin �inc and �¼ k0 cos �inc4 0 with the incident wavenumber

k0¼ 2��0/� and j�incj5�/2. The wavevectors kj for (x, y)2�j in medium number

j� 1 satisfy k2j ¼ k20ð�j=�0Þ
2. Due to the periodicity of �j the incident wave is scattered

into a finite number of plane waves in �0�R and also in �N�R if kN is real.
The induced field inside the layer j is denoted uj(x, y), j� 1. Also for

j¼ 0, . . . ,N� 1 define the functions on the boundaries:

uþj ¼ uj
��
�j�1

, vþj ¼ @nuj
��
�j�1

,

u�j ¼ uj
��
�j
, v�j ¼ @nuj

��
�j
, ð2Þ

where @n¼ nx@xþ ny@y denotes the normal derivative on �j and vinc¼ @nuinc. Thus,
there are four values attributed to every boundary �j: the upper values u�j , v

�
j (that

belong to the layer �j and are the floor values for that layer), and the lower values

uþjþ1, v
þ
jþ1 (that belong to the layer �jþ1 and are the ceiling values for that layer).

Taking into account the continuity of the tangential components of the total field

on the surfaces we can write the jump (transmission) conditions for these four values

in the form

u�j

v�j

" #
þ 	j0

uinc

vinc

� �
¼ Bj

uþjþ1

vþjþ1

" #
, ð3Þ

where 	j0 is the Kronecker symbol. Here the matrix B¼Diag(1, 
j) is a 2� 2 diagonal

matrix with 
j¼�j/�jþ1 or 
j¼ "j/"jþ1 for the TE or the TM polarization,

respectively. In this form, the conditions hold also for a perfectly conducting

bottom layer and in the conical case [9].
The Maxwell equations imply that the total field in all regions �j, j¼ 0, . . . ,N

excluding all boundaries �j, j¼ 0, . . . ,N� 1 satisfy the scalar Helmholtz equation

ðDþ k2j Þ utotðx, yÞ ¼ 0, ð4Þ
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where utot(x, y) are the z-components of the total electric, respectively, magnetic field.
The z-components of the incoming field are �-quasiperiodic in x of period d, i.e.

they satisfy the relation

uincðxþ d, yÞ ¼ e id�uincðx, yÞ:

In view of the periodicity of "j and �j this motivates us to seek �-quasiperiodic
solutions u0,N. Furthermore, the diffracted field must remain bounded at infinity,

which implies the well-known outgoing wave conditions (the Sommerfeld radiation

conditions) represented in the form of the Rayleigh expansion in the far field with

complex reflection c�m and transmission cþm order amplitudes) in the upper (�) and

lower (þ) media

utotðx, yÞ ¼ uinc þ
X
n2Z

c�me
ið�mxþ�

�
myÞ, y � 0;

uNðx, yÞ ¼
X
n2Z

cþme
ið�mx��

þ
myÞ, y � �H, ð5Þ

where �j� {(x, y) : y5 06 jyj5H} and �m, for the order number m are given by

relations

�m ¼ �þ
2�m

d
, ð� j

mÞ
2
¼ k2j � �

2
m , ��m ¼ �

0,N
m , 0 � arg��m 5�:

In the following it is also assumed that

arg "j � 0, arg�j � �, arg ð"j�j Þ5 2� ,

which holds for all existing optical (meta)materials [9]. Then 0 � arg k2N 5 2� and �þm
are properly defined for all m.

2.2. Boundary potentials, integral equations, and multilayer schemes

The integral equation approach of the present paper transforms the problem

(1)–(5) into a system of integral equations over profile curves. We combine here

the direct and indirect approaches as proposed in [8,10]. The multilayer scheme

in our solver is the original one of Maystre, that is, variant D in each layer by

Pomp’s classification ([10], p. 113). The functions u�j , v�j are represented using

the upper and lower limits of the single and double layer potentials

with unknown densities ’j on �j of single layer potentials defined on the layer

ceilings

V��j,kj
’j ðPÞ ¼

Z
�j

’j ðQÞ�kj,�ðP�QÞd�Q,

W�

�j,kj
’j ðPÞ ¼

Z
�j

’j ðQÞ @nðQÞ�kj,�ðP�QÞd�Q, ð6Þ
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where �kj,�ðPÞ, P¼ (X,Y ), is the quasiperiodic fundamental solution of period d
(Green’s function) given by the infinite series

i

4

X1
m¼�1

H
ð1Þ
0 kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�md Þ2 þ Y 2

q� �
eimd� ¼

i

2d

X1
m¼�1

e ið�mXþ�
j
mjYjÞ

� j
m

,

where H
ð1Þ
0 is the first Hankel function of order zero. In Equation (6) d�Q denotes

integration with respect to the arc length and n(Q) is the normal to �j at Q2�j

pointing into �j.
The value of the field in the layers can be found using the boundary data and the

famous Green’s formula. Then, a down-up marching procedure can be applied using
recurrence formulas for ’n and initial values u0,N and v0,N [1]. For the top layer we
can obtain the boundary integral equation with respect to ’1 (cf. Equation (41) in [1])

ðIþW�
0 ÞY1 � V�0 


�1
0 Z1

� 	
’1 ¼ ðIþW�

0 Þuinc � V�0 vinc, ð7Þ

where expressions for the operators Yj and Zj can be found in [1] (Equations (34)
and (38), respectively). If the bottom layer is perfectly conducting, the recurrence
terminates at ’N.

The choice of a numerical method to solve the multi-boundary integral equations
is to a large extent independent of other implementation details of the single-
boundary algorithm. It is not even necessary to use the same method for every
boundary provided that adjacent boundary solvers have a common data interface.
There are two different multilayer solvers implemented in the present code. The
‘Separating’ multi-boundary solver is based on the scattering amplitude matrix
algorithm [11]. By definition, it requires that a homogeneous medium separates two
adjacent corrugated regions by fictitious planes. The ‘Penetrating’ multi-boundary
solver is based on the algorithm described in [1,2] and does not require a separation
between two adjacent corrugated regions. A more transparent and detailed
exposition, including a discussion of various marching schemes that avoid
hypersingular potential operators, is given in [1,10]. Analytical aspects of boundary
integral operators can be found in many sources (cf. e.g. [9,10,12,13]).

2.3. Efficiency, absorption, and energy balance

Diffraction efficiencies or far field patterns for the reflected and transmitted fields
can easily be found from the corresponding boundary values. The efficiency of a
diffracted order represents the proportion of power radiated in each order. Defining

the power as the flux of the modulus of the Pointing vector jSincj ¼ Re ðEinc �HincÞ=2
(A denotes the complex conjugate of A) through a normalized rectangle parallel to
the (x, z)-plane, the ratio of the power of a reflected or transmitted propagating order
and of the incident wave gives the diffraction efficiency ��m of this order for the
partially polarized incident light in the form:

��m ¼ ð�
�
m=�Þ jðc

�
mðTE Þj

2 sin2 	þ jðc�mðTM Þj
2 cos2 	


 �
,

�þm ¼ ð�
þ
m=�Þð�0=�NÞ

2
jðcþmðTE Þj

2 sin2 	þ jðcþmðTM Þj
2 cos2 	


 �
, ð8Þ
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where the incident and diffracted plane waves are given by the polarization
angle 	 ¼ arctan½jE inc

z j = jH
inc
z j	 with the normalization jE inc

z j
2 þ jH inc

z j
2 ¼ 1.

One of the most important accuracy criteria based on a single computation is the
energy balance that can be generalized in the lossy multilayer case described below.
If the grating is perfectly conducting, then the conservation of energy is expressed by
the standard energy criterion

R ¼ 1, ð9Þ

where R is the sum of the reflection order efficiencies.
If the grating is lossless, Im �j¼ 0, j¼ 0, . . . ,N, then conservation of energy is

expressed by a similar energy criterion

Rþ T ¼ 1, ð10Þ

where T is the sum of the transmission order efficiencies.
In the general case,

Aþ Rþ T ¼ 1, ð11Þ

where A is called the absorption coefficient or simply the absorption in the given
diffraction problem. Besides being physically meaningful, expression (11) is very
useful as a numerical accuracy test for computational codes and especially impor-
tant in the X-ray and EUV ranges, where absorption plays a predominant role. In the
lossy case, one needs an independently calculated quantity A to verify Equation (11).
For such a quantity, we use the absorption integrals defined in [2] and derived below.

Because of the problem being invariant under translation by an integer number of
periods along the axis perpendicular to the grooves, one may restrict oneself to an
analysis of the heat power loss ~EA per grating period. ~EA can be calculated as the
difference between the energy fluxes that have crossed the upper, �0, and the lower,
�N�1, boundaries of the multilayer structure through an element of area bounded by
the x¼ 0, x¼ d, z¼ 0, and z¼ 1 planes:

~EA ¼

Z 1

0

dz

Z
�0

Sþ0 n0 ds�

Z 1

0

dz

Z
�N�1

SþN�1nN�1 ds, ð12Þ

where Sþ0 and SþN�1 are time-averaged complex Poynting vectors calculated at the
upper and lower boundaries, n0 and nN�1 are unit vectors of the normal, which are
interior to the regions under study, and arc length integration is performed along the
cut of the boundaries by the z¼ 0 plane.

Recalling that jSþj j ¼ 0:5ReEþj �Hþj we open the vector and dot products for
the TE and TM polarizations under the integral signs in Equation (12):

~ETE
A ¼ 0:5Re

Z
�0

Eþz ðH
þ
x cos b�Hþy cos aÞds�

Z
�N�1

Eþz ðH
þ
x cos b�Hþy cos aÞds

� �
,

~ETM
A ¼ 0:5Re

Z
�0

Hþz ðE
þ
x cos b� Eþy cos aÞds�

Z
�N�1

Hþz ðE
þ
x cos b� Eþy cos aÞds

� �
:

ð13Þ
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As follows from Maxwell’s equations

@nEþz ¼ ð�H
þ
y cos aþHþx cos bÞ=ði!�j Þ,

@nH
þ
z ¼ ð�E

þ
y cos aþ Eþx cos bÞ=ði!j Þ:

ð14Þ

Substituting Equation (14) in Equation (13), we obtain

~ETE
A ¼ 0:5Re

Z
�0

1

i!�1
@nEþz E

þ
z ds�

Z
�N�1

1

i!�N
@nEþz E

þ
z ds

� �
,

~ETM
A ¼ 0:5Re

Z
�0

1

i!1
@nH

þ
z H

þ
z ds�

Z
�N�1

1

i!N
@nH

þ
z H

þ
z ds

� �
: ð15Þ

In studies of electromagnetic field losses at the grating, ~EA, it should be

normalized against the heat power losses of the incident wave, EA, within a plane

element of area bounded by the same planes x¼ 0, x¼ d, z¼ 0, and z¼ 1:

ETE
A ¼ 0:5Re

Z d

0

1

i!�1
@nE inc

z E inc
z dx

� �
,

ETM
A ¼ 0:5Re

Z d

0

1

i!1
@nH

inc
z H inc

z dx

� �
: ð16Þ

By canceling the same factor ei�x in the expressions for the incident and diffracted

fields in a diffraction problem the explicit form of the incident field of unit amplitude

and of its normal derivative can be simplified:

E inc
z ,H inc

z ¼ e�i�y,

@nE
inc
z , @nH

inc
z ¼ e�i�yð�i�Þ: ð17Þ

Substituting now Equation (17) into Equation (16), recalling the boundary

conditions, and taking account of the plane surface of integration, we come to

ETE
A ¼ 0:5�d=!�0,

ETM
A ¼ 0:5�d=!0: ð18Þ

Using Equation (15) in conjunction with Equation (18), the normalized

expressions for ~EA, the electromagnetic field energy absorbed in the multilayer

grating, transform to

ATE ¼
~ETE
A

ETE
A

¼
1

�d
Re

Z
�0

i�0

�1
@nEþz E

þ
z ds�

Z
�N�1

i�0

�N
@nEþz E

þ
z ds

� �
,

ATM ¼
~ETM
A

ETM
A

¼
1

�d
Re

Z
�0

i0
1
@nH

þ
z H

þ
z ds�

Z
�N�1

i0
N
@nH

þ
z H

þ
z ds

� �
: ð19Þ
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Recalling that Re X¼ Im iX, Equation (19) for the universal field components u�j
and their normal derivatives v�j can be recast into the form

A ¼
1

�d
Im

Z
�0

u�0 v
�
0 ds� c

Z
�N�1

uþNv
þ
N ds

� �
, ð20Þ

where c¼�0/�N for the TE, and c¼ "0/"N, for the TM polarization.
Equation (20) for the absorption A of an electromagnetic field by a multilayer

grating coincides with the expression reported in [2] and derived by applying the
second Green’s identity to boundary functions for the contours in the upper and
lower media. By definition, the first integral in Equation (20) is 1�R, and the
second, T, vanishes if the lower medium is absorbing [15] or the lower boundary is
perfectly conducting. The sum AþRþT is actually the energy balance for an
absorbing grating, and the extent to which it approaches unity is a measure of the
accuracy of a calculation.

3. Modifications of the theory and implementation

It is well known that solution of the 2D Helmholtz equation with any rigorous
numerical code meets with difficulties at small �/d [12,14,16–20]. While the Standard
Boundary Integral Equation methods (SIMs) are robust, reliable, and efficient, they
exhibit poor convergence and loss of accuracy in the high-frequency range due to
numerical contamination in quadratures. Increasing matrix size and enhancing
computation precision, as well as application of convergence speed-up techniques,
which are successfully explored in low- and mid-frequency ranges, lead to
unreasonably stringent requirements for computing times and storage capacities in
high and, especially, ultrahigh frequency ranges (�/d5 1.E�2 and �/d5 1.E�3).
This section addresses a number of modifications required for the SIM to transform
it to the MIM together with relevant discussions.

3.1. Multilayer and discretization schemes

As to the implemented multilayer schemes, there are no substantial differences
between the well established approaches and the MIM in these higher levels of the
multilayer boundary integral equation theory.

In practice, the convergence and accuracy of efficiency computation depend
significantly on a proper choice of the discretization scheme and of the quadrature
rule for the SIMs [12]. Usually, one of collocation methods (Method of Moments) is
used with the distribution of points on a uniform grid. In low- and mid-frequency
ranges, better results are often obtained using equidistant steps along the arc length
[13,18,21]. Another possible function of the distance between collocation points is
prescribed by equal steps along the axis perpendicular to the grooves [6,8]. As
pointed out in [8], in the case of regular kernels and periodic integrand functions,
a step function approximation of the integrand expression, with division of the
integration interval (period) into equal parts, is preferable. In the MIM, the fastest
Nyström method is used (cf. [2]), where the integrals in the integral operators are
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approximated by the quadrature rule with the collocation points used as quadrature

knots. Such a direct discretization method combined with the simplest rectangle

(trapezium) integration rule works well for shallow border profile gratings and,

especially, at small �/d [1,3,15]. In the presence of a profile with corners (piecewise

linear), the collocation and quadrature nodes are set in such a way that every corner

lies half-way between the nodes adjacent to it and no curvature-like single-term

corrections are added [3,15]. However, for deep grating calculations another version

of the quadrature formula involving the normal derivative of the Green’s function

should be used. The nodes are set in such a way that all corners are nodes and the

curvature corrections are applied by adding the corner term [6]. A more efficient

approach with meshes of collocation points graded towards the corner points of the

profile curves together with the appropriated quadrature rule is introduced in [12].

3.2. Numbers of collocation points required in the SIM and MIM

It is well known that the number of collocation points per wavelength used in the

various SIMs can be reduced significantly, up to an order of magnitude, when �/d
becomes small [3,8,19]. The question is how small it might be for very small �/d
problems, say for �/d5 1.E�3?

In Figures 2 and 3, convergence of the SIM is demonstrated for an analytical case

of diffraction from a plane transmission interface (normal incidence in vacuum with

the lower-medium refractive index n1¼ 1.5) for different �/d. For �/d¼ 1 in

Figure 2(a), the convergence rate reached with speed-up techniques is high, with the

energy balance error of 
1.E�6 in both polarization states for the number of

collocation points ~N¼ 10. For �/d¼ 1.E�1 in Figure 2(b), the convergence rate

reached with speed-up techniques is medium, with the energy balance error of


1.E�5 in both polarizations for ~N¼ 100.
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Figure 2. Numerical energy balance error with the SIM used for the problem of diffraction on
a plane transmission interface (normal incidence in vacuum with the lower medium refractive
index n1¼ 1.5) vs. number of collocation points ~N for (a) �/d¼ 1 and (b) �/d¼ 0.1.
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For �/d¼ 1.E�2 in Figure 3(a), the convergence rate, again obtained with speed-

up techniques, is low with the energy balance and transmitted energy errors of


1.E�3 in both polarizations for ~N¼ 500. The difference between the TE and TM

transmitted energies for ~N5 300 is seen to be large, 
1.E�1. For �/d¼ 1.E�3 in

Figure 3(b), the convergence rate calculated with speed-up techniques is very low,
with the energy balance error of 
1.E�2 in both polarizations for ~N¼ 1000. As seen

from the figure, the convergence of the series deteriorates for ~N4 1000 as the

distance between the arguments of the Green’s function tends to 0. In contrast to the

plots of Figure 3(b), the results for �/d¼ 1.E�6 obtained without application of any

speed-up techniques exhibit the fastest convergence rate with a negligible energy

balance error of 
1.E�16 for ~N¼ 2 only and are equivalent to analytical
calculations. The most important among the convergence speed-up options which

have to be switched off in this case is the allowance for logarithmic singularity [8],

and second important is the correction applied to account for the cut-off terms in the

expansions of the Green’s series (the Aitken 	2 term in our case [6]).
Shallow gratings and rough mirrors exhibit similar behavior for very low � or �/d

in the X-ray and extreme ultraviolet (EUV) ranges. While at least one collocation
point per wavelength is required to reach efficiency convergence for the SIM, the

MIM works reliably and fast despite the very small number of collocation points per

wavelength used in the approach (it is also true for echelles [22]). For example, if a

period includes 50 collocation points and �/d¼ 1.E�3, there is only 5.E�2 points per

wavelength required for the MIM. In this case, however, the profile depth, the
bilayer thickness, and the incident radiation wavelength must be of the same order of

magnitude. The same rule for reaching the maximum diffraction efficiency is, on the

whole, valid for longer wavelengths too. While the results presented in Figures 2

and 3 may certainly be different for various realizations of the integral method and

of the speed-up techniques used, the overall pattern remains the same. Such

calculations depend also significantly, as shown in Figure 4 and will be discussed
further, on the actual summation rule chosen for Green’s series.
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Figure 3. Numerical energy errors with the SIM vs. ~N used for the same diffraction problem
as in Figure 2 but for (a) �/d¼ 0.01 and (b) �/d¼ 0.001.
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3.3. Summation rule for the Green’s series

The MIM described here specifies the number of positive and negative terms in the
Green’s functions and their normal derivative expansions. In the simplest case typical
of real problems, the kernels are truncated symmetrically at the lower summation
index �P and the upper index þP, where P is an integer defined by

P � g ~N: ð21Þ

The truncation ratio g is optimized for small values of ~N and is kept constant as
~N increases. It was found that g equal to one-half is a reasonably good choice for
most practical computations and, in particular, for small �/d. Typical dependencies
on g for the above example with �/d¼ 1.E�2 are shown in Figure 4. The energy
balance is closer to 1 in both polarizations and TE/TM transmitted energies are close
to each other at g¼ 0.5, with divergence seen to set in at smaller and larger values
of g. While today this rule is no more than empirical, there can be no doubt
whatsoever that this choice is valid, and this has been verified in many realistic
examples during recent years. Note that in the SIM developed in [8], g¼ 2/3 for the
resonance domain and should be varied for different �/d. It is worth noting that
g¼ 2/3 is worse than g¼ 1/2 because the computation time is proportional to 2P ~N2.
Significantly, the number of positive and negative exponential terms used in
computations of the Green’s functions and their normal derivatives should be
restricted to be not larger than ~N, because such series diverge for P� ~N [2,8,21].

Instead of the direct summation algorithm used in the MIM, more sophisticated
methods can be implemented to accelerate the computation of the integral kernels in
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Figure 4. Energy balance and transmitted energy for calculations using the MIM vs.
truncation ratio g for the same diffraction problem as in Figure 2 but for �/d¼ 0.01 and
~N¼ 100.
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the SIMs (cf. e.g. [12]). Unfortunately, it has turned out that such approaches are not

efficient for very small �/d problems. To reduce computing time for matrices of the

discretized operator equations, two enhancements at the algorithmic level are used in

the MIM: cache for the Green’s series and cache for exponential functions (plane

waves) [2]. Both assume a big time–memory trade-off at small �/d. The amount of

memory required for cache can be calculated in advance in each case and

adjustments (cache off or partial) are done automatically.
One more important note regarding the energy balance summation appears to be

pertinent here. The Green’s function and its derivative members tend to big values

when the y-component ��m of the m-th diffraction order wavevector in the upper

medium or/and in the lower medium (for transmission gratings) tends to zero. This

means that the diffraction order becomes grazing or even close to evanescent. Its

efficiency may be high from the physical point of view or/and diverge from the

mathematical point of view (it depends also on ~N ). It is well known from diffraction

theory that the efficiency of strictly grazing propagating, as well as of all evanescent,

orders is zero. Moreover, various rigorous and approximate methods valid for

shallow gratings operating at small �/d, as well as all experimental data suggest

convincingly that the efficiency decreases rapidly with increasing modulus of the

diffraction order number. As a rule, the efficiencies of such grazing orders are very

close to zero and much less than the accuracy of computations. Thus, such big

efficiencies which correspond to high grazing orders must be excluded from the

energy balance considerations.

4. Different physical models and sample calculations

Three types of small �/d problems are known from optical applications: (a) shallow

gratings working in the X-ray and EUV ranges, both at near-normal and grazing

angles; (b) deep echelle gratings with a steep working facet illuminated along its

normal by light of any wavelength; and (c) rough mirrors and gratings in which

rough boundaries can be represented by a large-d grating, and which contain a

number of random asperities illuminated at any possible angle and wavelength.

Different representations of border profiles accounting for their shape and

conductivity types can be utilized to compute efficiencies of such various relief

structures.
To study the scattering intensity with the use of a forward electromagnetic code

and Monte Carlo simulation, one should first of all prepare statistical realizations of

the boundary profiles of the structure under investigation, then calculate the

scattering intensity for each realization and, finally, average the intensities over all

the realizations. The present author used the spectral method [23] to generate plane

surfaces with a Gaussian height distribution and a Gaussian correlation function. To

allow randomization of grating boundaries, this method was extended to include

the case of non-plane interfaces prescribed by arbitrary polygons [7]. Non-plane

boundaries are characteristic also of self-assembled low-dimensional quantum

structures defined by other asperity statistics. For an investigation of specular and
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diffuse X-ray scattering from multiple ensembles of quantum dots in the frame of
MIM, the reader is referred to [24].

A few words regarding the extent to which the calculations made in extremely
hard cases can be trusted are in order here. The workability of the programs has been
confirmed by numerous tests usually employed in non-extreme cases, more
specifically, the reciprocity theorem, stabilization of results under doubling of ~N
and variation of g, comparison with analytically amenable cases of plane interfaces,
consideration of the inverse (non-physical) radiation condition, insertion of fictitious
boundaries of various geometries in layers, use of different variants of collocation
point distribution and shifts, comparison with the results obtained by another of our
codes or with published data, or with information corresponded to us by other
researchers, including results of measurements.

4.1. Real border profile Mo/Si multilayer grating for unpolarized
near-normal-incident EUV

An example of efficiency calculations for cases (a) and (c) combined is presented in
Figure 5; it is essentially a 20-pair Mo/Si-coated 4200 groove/mm flight grating of
the solar mission Hinode (former Solar-B) working in the 17–22-nm wavelength
range [1]. The real border profile of the grating as measured by atomic force
microscopy had trapezoidal shape with a 6-nm groove depth, 35� slopes, and random
roughnesses, which required application of randomization to a trapezoid to allow
exact efficiency prediction. Three different physical models can be applied to
compute efficiencies of such a complex grating structure: the ‘rigorous’ one taking
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Figure 5. Calculated and measured 1st order non-polarized efficiencies of the 4200/mm
grating with 20 Mo/Si bilayers on Si, which operates at an angle of incidence of 6.5� vs.
wavelength.
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into account 41 randomly rough trapezoidal borders; the ‘smooth’ model taking into
account 41 perfect trapezoidal borders; and the ‘buried’ model with 40 upper plane
borders plus one bottom perfect trapezoidal border, and Debye–Waller (DW)
amplitude factors allowing for random roughnesses on plane interfaces [5,25]. For
the ‘rigorous’ model the trapezoidal interface has rms roughness �¼ 0.2 nm (Si-Mo)
and �¼ 0.85 nm (Mo-Si) and lateral correlation length �¼ 10 nm. It is worth noting
that the ‘buried’ model, with a stack of plane interfaces over one non-planar
interface, can be used to advantage, due to its good accuracy and very high speed, for
multilayer grating efficiency predictions for shallow gratings in X-ray–EUV ranges
[1,3,6]. As the depth of modulation and the wavelength decrease, the problem with
plane interfaces becomes a good physical approximation to the model with identical
non-planar borders. There are no mathematical approximations in this model except
the numerical implementation.

The ‘rigorous’ and the ‘buried’ models are capable of accurately predicting both
the shape of the efficiency curves and the heights of their maxima (see Figure 5).
While the physical model utilizing one non-plane border and the DW asymptotic to
allow for roughnesses does not yield wavelength separation of the inside (plus) and
outside (minus) orders, the ‘rigorous’ and ‘smooth’ models are capable of accurately
predicting the position of the efficiency maxima. Thus, the ‘rigorous’ model is the
best model which gives efficiencies close to measured data. Five sets of 41 generated
rough non-correlated border profiles are enough to compute exact efficiencies of
such a multilayer grating with the energy balance error of 
1.E�4 for ~N¼ 100. None
of the known convergence speed-up techniques have been applied in all cases. The
time taken up by one ‘rigorous’ computation on a workstation with two Quad-Core
Intel� Xeon� 2.66GHz processors, 8MB L2 Cache, 1333MHz Bus Clock and 16
GB RAM, is about six seconds when operating under Windows Vista� Ultimate 64-
bit and employing eightfold paralleling.

4.2. Oxidized Al echelle for TE/TM polarization in the near ultraviolet

As to case (b), for echelles, in which resonance on the working facet plays a
predominant role, it is often, but not always, possible to ‘rotate’ a plane stack in the
‘buried’ model and consider an incidence on the grating coating with respect to the
working facet rather than to the substrate [3,6]. This approach generally works in
the case of thin layers (layer thickness-to-wavelength 50.1), an area hard to cope
with for SIMs. However, the sophisticated approach developed for single-coated
echelles in [12] is fast and exhibits a high rate of convergence. Figure 6 displays an
example from the above publication which calculated the TE/TM �122 order
efficiency and absorption (IESMP data) for an 83-groove/mm, 78.7� coated
aluminum echelle in the Littrow mount at � of 193 nm vs. thickness of the natural
protective Al2O3 layer, and compared the calculations with the data obtained with
our ‘buried’ model.

The efficiency results presented for the TM polarization are close in the whole
thickness range. For the TE polarization, the agreement within a few percent in the
efficiency is reached for layer thicknesses less than 
15 nm. The energy balance error
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reached in both polarizations is 
1.E�4 for ~N¼ 600. Note that the convergence
speed-up techniques were used in this deep grating case. The time taken up by one
computation on the above-mentioned workstation is about seven seconds.

4.3. Rough Au mirror for TE-polarized grazing incidence X-rays

A bulk model of a typical gold X-ray mirror for use at grazing incidence near the
angle of total external reflection was chosen as an example of case (c). The difference
between the asymptotic and rigorous approaches can be clearly seen in Figure 7(a)
which plots the calculated specular TE reflectivity of Au surfaces with �¼ 1.5 nm vs.
the grazing angle of incidence for Cu K�1 radiation (�¼ 0.154 nm) and for different
values of �. The reflection coefficients calculated rigorously in the low-intensity
domain for �¼ 10 mm are approximately twice those obtained with the DW
asymptotics (Born approximation) which is commonly used in this region and
corresponds to �¼1. For �¼ 0.1 mm, the excess is already about fourfold. By
contrast, close to the critical angle (Figure 7b) the rigorous data obtained for
�¼ 0.1mm lie 
20% below the values calculated for this region with the Nevot–
Croce factor [25], which corresponds to �¼ 0 and is derived in the frame of the first-
order distorted-wave Born approximation (DWBA) [5]. For �¼ 10 mm, in the region
of high intensities, the differences are still larger, to reach finally a few hundred
percent.

The behavior of the scattering intensity on � which is illustrated graphically in
Figure 7 matches qualitatively with the results obtained in the frame of the second-
order DWBA while differing clearly in quantitative estimates, particularly for values
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Figure 6. �122 order TE and TM efficiencies and absorptions calculated for an 83-groove/
mm, 78.7� Al echelle in Littrow mount at �¼ 193 nm vs. Al2O3-coated layer thickness.
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of � for which second-order DWBA does not work [26]. To reach the required
average statistical depth with due allowance for the fine structure of the roughness in
the above example, one has to use 
100 asperities per d, average over 9–25 random
boundaries and assume 400–3200 collocation points. For �¼ 10 mm and d¼ 1500 mm,
�/d� 1.E�7, a value too small to be dealt with in any known rigorous numerical
approach. For the MIM, however, this formidable scattering problem is found to be
convergent and yields quite accurate results (energy balance error 
1.E�6) for only
400 collocation points used and no speed-up techniques invoked. The time taken up
by one computation on the above mentioned workstation is about eight seconds.

5. Summary

The boundary integral equation method was considered for small wavelength-to-
period 2D diffraction problems. A few principally important areas of its modifica-
tion were pointed out. Special attention was paid to the main aspects of the MIM for
�/d� 1 as well as to a more general treatment of the energy conservation law
applicable to multilayer absorption gratings.

In the cases of shallow gratings and mirrors working at very small �/d,
introducing speed-up terms in boundary integral equation methods produces an
adverse numerical effect because of the ensuing uncontrolled growth of coefficients
in analytically improved asymptotic estimations. With all speed-up options turned
off, it is possible to obtain, for the most difficult problems, surprisingly good
convergence in orders of practical interest, and an energy balance very close to 1.

The developed MIM works reliably and fast for very low � or �/d in the X-ray–
EUV range, despite the small number of collocation points per wavelength used in
the approach; however, the profile depth, the bilayer thickness, and the incident
radiation wavelength must be of the same order of magnitude. It is also true for
echelles working at any wavelength.
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Figure 7. Specular TE reflectance of Au surfaces calculated for rms roughness �¼ 1.5 nm
and different correlation lengths � for �¼ 0.154 nm vs. grazing angle of incidence on
(a) logarithmic and (b) linear scales.
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The accurate results obtained by the rigorous method for the intensity of X-ray
scattering by rough mirrors and randomly rough gratings may differ substantially

from those derived using known asymptotics and approximate approaches. These
differences may give rise, for instance, to incorrect estimates of the rms roughness
and correlation length if they are determined by comparing experimental data with

calculations. Besides, the rigorous approach permits taking into account any known
roughness statistics.
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